

Marco Cantù

Delphi 2009
 Handbook

Piacenza, Italy, November 2008

2 -

Author: Marco Cantù

Publisher: Wintech Italia Srl, Italy

Editor: Peter W A Wood

Tech Editors: Holger Flick, Jeroen Pluimers, Jan Goyvaerts, Jeremy North,
Marco Breveglieri

Cover Designer: Fabrizio Schiavi

Copyright 2008 Marco Cantù, Piacenza, Italy. World rights reserved.

The author created example code in this publication expressly for the free use by its read-
ers. The source code for this book is copyrighted freeware, distributed via the web site
http://www.marcocantu.com. The copyright prevents you from republishing the
code in print media without permission. Readers are granted limited permission to use
this code in their applications, as long at the code itself is not distributed, sold, or com-
mercially exploited as a stand-alone product.

Aside from this specific exception concerning source code, no part of this publication may
be stored in a retrieval system, transmitted, or reproduced in any way, in the original or
in a translated language, including but not limited to photocopy, photograph, magnetic,
or other record, without the prior agreement and written permission of the publisher.

ISBN: Not Assigned.

Delphi is a trademark of CodeGear, a subsidiary of Embarcadero Technologies. Windows
Vista is a trademarks of Microsoft. Other trademarks are of the respective owners, as ref-
erenced in the text. The author and publisher have made their best efforts to prepare this
book, and the content is based upon the final release of the software whenever possible.
The author and publisher make no representation or warranties of any kind with regard
to the completeness or accuracy of the contents herein and accepts no liability of any kind
including but not limited to performance, merchantability, fitness for any particular pur-
pose, or any losses or damages of any kind caused or alleged to be caused directly or
indirectly from this book.

Edition 1, Revision 1. November 25th 2008.
Printed by Lulu Press in USA. Electronic edition licensed to Embarcadero Technologies.

Printed copies of this book are on sale on http://www.lulu.com
More information on http://www.marcocantu.com/dh2009

Marco Cantù, Delphi 2009 Handbook

Preface - 3

Preface

To my wife Lella, with love, encouragement,
passion, dedication, and patience

This is a book about CodeGear Delphi 2009.

You won't find an introduction to Delphi programming, its Object Pascal
language or its Visual Component Library in it. In this book you can read
only about new features of Delphi 2009 for Win32 in each of these areas.

The book covers Delphi 2009 Unicode support, the new language features
(such as generics and anonymous methods), the improvements of the IDE,
the new classes of the Run Time Library, the new components of the VCL
(including the Ribbon control), and the extensions to the database architec-
ture and the DataSnap multi-tier technology.

As usual for my books, I'm covering the theory but also showing you dozens
of examples, you can download and play with on your computer. If you still
don't own Delphi 2009, you can download the trial version and also look at
the actual programs in action in a series of videos linked from the web page:
http://www.marcocantu.com/dh2009/videos.html

Marco Cantù, Delphi 2009 Handbook

4 - Preface

This book is a sequel to Delphi 2007 Handbook, as it doesn't repeat its con-
tent at all. If you are interested in new features of Delphi 2009 since Delphi
7 (or a similar old version), you can buy both of my Handbooks.

If you are looking for an introduction to Delphi, instead, you can refer to my
“Essential Pascal” for the language foundations and to the books in “Master-
ing Delphi” series (in particular either “Mastering Delphi 7” or “Mastering
Delphi 2005”). While my recent Handbooks and “Essential Pascal” are
available on Lulu.com, the Mastering series was published in a more tradi-
tional way and can be found in physical or online bookstores.

You can find more details about all of my books at my personal website:
http://www.marcocantu.com

As usual, writing this book was quite an effort, and I have to thank many
developers from the Delphi community who supported me in various ways,
starting with the tech reviewers and Delphi product managers and R&D
team members. A big thank you goes to my wife and kids for their patience
and encouragement.

I hope you enjoy the result, like I've enjoyed writing it. And I hope you like
Delphi 2009, one of the best versions of Delphi ever, as I did.

Marco Cantù, Delphi 2009 Handbook

Table of Contents - 5

Table Of
Contents

Preface...3

Introduction...13
The Status of Delphi..14

Why Win32 Matters...14
This Book..15
The Author...16

Contact Information...17

Part I:
 Unicode..19

Chapter 1: What is Unicode?..21
Characters from the Past: from ASCII to ISO Encodings..22
Unicode: An Alphabet for the Entire World..24

From Code Points to Bytes..27
Unicode Code Points and Graphemes...27

Marco Cantù, Delphi 2009 Handbook

6 - Table of Contents

Unicode Transformation Formats (UTF)...28
Looking at UTF-16 ..29
Unicode Code Point Descriptions...32
Byte Order Mark..34

Unicode in Win32..34
Unicode API Call Speed...37
UnicodeString Parameters in API calls...38
Unicode and Fonts and APIs...39
Unicode Before Delphi 2009...41

What's Next..41

Chapter 2: The Unicode String Type..43
From AnsiChar to WideChar..44

Char as an Ordinal Type..44
Converting with Chr...46
32-bit Characters..46
 The New Character Unit...47

Of String and UnicodeString..49
The Internal Structure of Strings..50
UnicodeString and Unicode..52
The UCS4String type..54

The Many String Types...54
The New AnsiString Type..55
Creating a Custom String Type..56
Managing UTF-8 Strings...60

Converting Strings...61
Conversions Slow Down the Code...62
The Ensure Calls..64
Watch Out for Literals in Concatenation..65
Using RawByteString...66
New UTF-8 Conversion Functions..70

String and Character Literals..70
Streams and Encodings...72

Streaming Strings Lists..73
Defining a Custom Encoding...76

Unicode and the VCL...79
A Growing Core RTL?..80
Unicode in DFM Files..80
Localizing the VCL..81

What's Next...82

Chapter 3: Porting to Unicode...83
Char Operations That Fail..84

Watch Out for Set of Char...84
Avoid FillChar for Characters..86

Marco Cantù, Delphi 2009 Handbook

Table of Contents - 7

String Operations That Fail or Slow Down..87
Turn on All String Conversion Warnings...88
Don't Move String Data...89
Reading and Writing Buffers...91
Appending and Concatenating Strings...92
Strings are... Strings (not Bookmarks)..93
Actual Troublesome “Porting” Cases..93
InliningTest used AnsiString...94
Calling Ansi-prefixed Functions..95

Unicode Strings and Win32..97
Win32 Console Applications...98

PChar and Pointer Math...99
The Problem with PChar..100
From PChar to PByte..101
PInteger and the POINTERMATH Directive..102
Don't use PChar for Pointer Math...103

Variants and Open Arrays Parameters...103
What's Next..104

Part II:
 Delphi 2009 and Its Compiler...105

Chapter 4: New IDE Features...107
Installing and Running...108

.NET SDK Not Needed...108
Windows Install Clean Up...109
The -idecaption Flag..109

Managing Delphi Projects...110
Upgrading Project Configuration Files..110
Project Options Dialog Redesigned...113
New Project Options for the Compiler...114
Other New Project Options..116
Default Projects Location...116

The Project Manager..117
Project Manager Views...118
Build Configurations and Configuration Settings...119
Project Configuration Manager...122

Managing Resources in the IDE..123
A “New” Resource Compiler..126

The Delphi Class Explorer...127
Other New Features...129

Tool Palette Search Box...130
Updated Components Wizards..131

Marco Cantù, Delphi 2009 Handbook

8 - Table of Contents

Anything New in the Editor?...132
Debugger..133

Debugging and New Language Features...134
What's Next..134

Chapter 5: Generics...135
Generic Key-Value Pairs..136

Type Rules on Generics..139
Generics in Delphi...140

Generic Types Compatibility Rules..141
Generic Global Functions (Well, Almost)...143
Generic Type Instantiation..144
Generic Type Functions...145

Generic Constraints...148
Class Constraints..149
Specific Class Constraints...151
Interface Constraints..151
Interface References vs. Generic Interface Constraints..154
Default Constructor Constraint...155
Generic Constraints Summary and Combining Them..156

Predefined Generic Containers...157
Using TList<T>...158
Sorting a TList<T>...159
Sorting with an Anonymous Method...161
Object Containers...163
Using a Generic Dictionary..164

Generic Interfaces..167
Predefined Generic Interfaces...170

Smart Pointers in Delphi..171
What's Next...176

Chapter 6: Anonymous Methods..177
Syntax and Semantic of Anonymous Methods...178

An Anonymous Method Variable...179
An Anonymous Method Parameter...179

Using Local Variables..180
Extending the Lifetime of Local Variables...181

More on Anonymous Methods..183
The (Potentially) Missing Parenthesis..183
Behind Anonymous Methods..185
Ready To Use Reference Types..186

Anonymous Methods in the Real World...187
Anonymous Event Handlers..188
Timing Anonymous Methods..190
Thread Synchronization with the VCL..193

Marco Cantù, Delphi 2009 Handbook

Table of Contents - 9

Parallel For Loop..196
AJAX in Delphi..200
Debating the AJAX Demo...204

What's Next...206

Chapter 7: More Language and RTL Changes...207
Other New Language Features...208

Compiler Version...208
A Commented Deprecated Directive..209
Exit with a Value..210
Setting Properties by Reference...211
Changes in Overloading ..212
Code That Triggers a Compiler Error..213
Code That Calls a Different Method..214
New and Aliased Integral Types..214

TObject's New Methods...216
The ToString Method...216
The Equals Method...217
The GetHashCode Method...217
The UnitName Method..218
Porting an Example from .NET...218
TObject Class Summary...221
Unicode and Class Names...222

Changes in Threading Support...223
Building Strings...226

Methods Chaining in StringBuilder..228
The Speed of Building Strings...229
Porting a Delphi for .NET Example...231

Using Readers and Writers...232
Exception(al) Enhancements..236

The InnerException Mechanism...237
Preprocessing Exceptions..241
New Exception Classes..242

Summary of New Units and New RTL Classes..243
More and Less FastCode..244

What's Next...244

Part III:
 VCL and Databases...245

Chapter 8: VCL Improvements..247
VCL Core Improvements..248

Custom Hints and Balloon Hints..248

Marco Cantù, Delphi 2009 Handbook

10 - Table of Contents

Enhancements to Standard Components...251
Buttons Get New Features...251
Glowing Labels and LinkLabels...254
RadioGroup Text Wrapping..255
Edits Get Many New Features...256
ComboBoxes and Text Hints...259
The New ButtonedEdit Control...259

Updates to Common Controls..262
Grouping in a ListView..262
Marquee and More for ProgressBar Controls...265
Check Boxes in a Header...266
RichEdit 2.0..267

Native VCL Components...269
The Action Manager Components...269
About Panels..269
The New CategoryPanelGroup Control...270
TrayIcon Update..273
Default Fonts for Application and Screen Global Objects.....................................274
Improved Graphics Support..276
The Clipboard and Unicode..280

Extended Vista Support...281
What's Next...282

Chapter 9: COM Support in Delphi 2009..283
IDL, Type Libraries, and RIDL...284

A Textual RIDL..285
The RIDL Format (COM Servers)..286

Registering and Calling the Server..290
The New Registered Type Libraries Pane...291
COM and Unicode...293
Returning Features: Active Forms...294
What's Next..297

Chapter 10: The Ribbon...299
Introducing the Fluent User Interface...300

The Legal Side of the Ribbon...301
A First Simple Ribbon..301

Actions and The Ribbon...304
From Events to Actions...305
The ActionList and ActionManager Components..306
Actions and Ribbon in Practice...307
Groups And Commands..308
Application Menu...310
Quick Access Toolbar...313
Supporting Key Tips...313

Marco Cantù, Delphi 2009 Handbook

Table of Contents - 11

The Ribbon Components...315
Ribbons for Database Applications...319
Using Screen Tips..323

Screen Tips with No Ribbon..323
Screen Tips Manager and Actions...325

What's Next...328

Chapter 11: Datasets and dbExpress...329
A Unicode ClientDataSet..330
Unicode in Datasets, Take 2..332

Unicode String Lists...333
Bookmarks...334
Field Types and Strings..335

Other Dataset Enhancements...336
New Field Types...336
A More Virtual Dataset..337
Fields Extensions..341
BLOB fields Considered ANSI...343
Parameters Extensions..344

DataSet Internals..344
Porting a (Simple) Custom Dataset...345

dbExpress in Delphi 2009..346
Connection Settings and Connection Strings...347
Setting Driver Properties and Delegate Drivers...349
Deployment and INI files..350
Drivers in the Executable...351
Extended Metadata Support..352
Data Pumping for dbExpress...356

Data-Aware Controls...357
From DBImage to Poor Old DBGrid...359

What's Next...359

Chapter 12: DataSnap 2009...361
Building a First DataSnap 2009 Demo..362

Building a Server..362
The First Client..364
From DataSnap to DataSnap 2009...365
Adding Server Methods...366

Sessions and Threading with a Non-Database DataSnap Server................................370
Server Objects Life Cycle...373
A Client Starting the Server and Opening Multiple Connections..........................374
Memory Management..377
Thread Management..378

Porting an Old DataSnap Demo..381
Porting the Server...381

Marco Cantù, Delphi 2009 Handbook

12 - Table of Contents

Upgrading the Client..382
Advanced Features of ThinPlus2009..383

The DataSnap Administrative Interface...387
Conclusion...390

Index..391

Marco Cantù, Delphi 2009 Handbook

Introduction - 13

Introduction

First introduced by Borland on February 14th 1995, Delphi has a long and
glorious history of success in the Windows development and client/server
areas. With millions of applications written in its Object Pascal language,
Delphi spawned an entire ecosystem of components, tools, magazines,
books, and (of course) web sites and online resources.

Delphi is now in its 12th version, the 20th if you count all the way back to its
predecessor Turbo Pascal1, which was first released 25 years ago. What's
new in this version of Delphi is the company owning the product!

With the acquisition of the CodeGear division of Borland on July 1st, 2008,
Delphi became a subsidiary of Embarcadero Technologies. This change of
ownership happened quite late in the Delphi 2009 development cycle, so the
only practical effect of the change is the inclusion of ER/Studio in the Archi-
tect version of the product. Since the start of the CodeGear division within
Borland, though, there has been a renewed focus (and investment in terms
of R&D, QA, and Docs) on Delphi, specifically in its Win32 version. That's
why it is relevant to focus for a second on some higher-level political issues.

1 The current version of the Delphi compiler, in fact, is 20.00. This is highlighted by
the value of the VER200 define, mentioned in the section “Compiler Version” at the
beginning of Chapter 7.

Marco Cantù, Delphi 2009 Handbook

14 - Introduction

The Status of Delphi
As I've just mentioned, the creation of the CodeGear division and then the
acquisition of that division by Embarcadero Technology is providing a new
foundation for Delphi, and new funding for investing in the product. Even if
not aggressively marketed, and out of the radar of most publications Delphi
still has millions of active users, both in the ISV sector (where its deploy-
ment simplicity wins over frameworks-based solutions) and in business
client/server environments, where the stability of an investment is worth
more than the coolness of the platform.

It is true that the Delphi community is smaller than it was a few years back,
and that part of it sticks with older versions of the product, but it is certainly
still lively in many countries and has actually got back into a nice mood over
the last year.

Why Win32 Matters
If you read most of the IT press, follow blogs, or attend to conferences, it
looks that only the latest technology (and the latest fad) are worth working
on and everything else is either dead of dying away. This is far from true.

From COBOL development to mainframes, from AS/400 computers to DBF
databases, there is a ton of legacy technology that's not only maintained but
sees significant new investment. It might be for compatibility reasons, but it
is also because companies prefer having a proven and reliable technology for
their core business rather than risking their business over the most-recently
hyped technology.

This doesn't mean, of course, that following trends, providing higher qual-
ity, and empowering users is not important. Quite the opposite. If you can
keep delivering additional value on a solid foundations, you have a win-win
situation. Looking at the Windows side of things, for example, Microsoft has
certainly created a lot of value with its growing set of libraries and architec-
tures based on the solid foundation of the .NET framework. On the other
hand it is true that, despite the robustness and stability of the core, targeting
the latest and best .NET technologies is like focusing on a fast moving tar-
get, which is not exactly the best thing when you need to build your

Marco Cantù, Delphi 2009 Handbook

Introduction - 15

client/server application that will take a couple of years to create and you
hope will last at least for the next ten years or so.

The other extreme is that of Micro ISV, small tools vendors, shareware
developers, Internet utility builders. They are in the situation of short life
span products and could certainly benefit for staying on the edge... but even
they cannot rely on a large and even changing framework for deploying their
applications. They need something that works on each and every Windows
box out there. This is a situation in which Delphi shines in comparison to
most other solutions. The only real exception is Visual C++, but (if you've
never tried to do so) developing in it is not a RAD and OOP experience
like .NET and VCL development are.

Visual C++ MFC library is only a thin layer on top of the Windows API,
while Delphi provides what has been called a platform, with memory man-
agement and runtime services, a pretty large class library with lots of insight
into user interface creation, Internet support, and database connectivity, to
name only the most noticeable areas of the product.

Delphi does such a good job of producing native looking Windows applica-
tions such as Skype that there is rarely any visible sign that an application
has been developed with Delphi.

This Book
Having introduced the status of Delphi, it is about time to talk about this
book. Like my recent “Delphi 2007 Handbook” this is not an all encom-
passing manual covering all of the features of Delphi, as this would probably
require close to 4,000 pages2.

Despite its size, the focus of this book is uniquely on new features found in
Delphi 2009, or at least added to Delphi since Delphi 2007 was released (as
BlackFish SQL and some of the dbExpress metadata extensions were
included in Delphi 2007 updates).

2 This figure (4,000 pages) is my estimate of the amount of material I've written in
books about Delphi over the last 13 years. That is, without considering chapters that
were included in subsequent editions of my Mastering Delphi series.

Marco Cantù, Delphi 2009 Handbook

16 - Introduction

Needless to say I've given a central role to Unicode and to the core language
changes (like generics and anonymous methods), but there is also material
on updates to the RTL and the VCL, the improved support for Vista, the
latest user interface controls, and an in-depth analysis of the improved
dbExpress and new DataSnap 2009 multi-tier capabilities of the product.

As in my past books, there is a lot of theory and overview material mixed
with countless examples, readily available online at:
http://www.marcocantu.com/dh2009

As I mentioned in the “Preface”, I've also created short demonstration
videos (covering how the program works, not how it was written) for most of
the examples in the book, available online and listed at:
http://www.marcocantu.com/dh2009/videos.html

Having published this book through Lulu.com, I could shape it the way I like
most, get the help of editors and reviewers I trust, and (hopefully) make it
more valuable for you while keeping the price lower than through a tradi-
tional channel. When I published “Delphi 2007 Handbook”, it was my first
experience of publishing via Lulu.com. Now I've learned from mistakes,
streamlined some operations, and have reduced some of the publishing
headaches to fully focus on writing for quite some time. I hope you find this
effort valuable!

The Author
For those of you new to my books, and for those who haven't read a recent
one, my name is Marco Cantù, and I've been in the “Delphi book writing”
business since the first version of the product, when I released the original
“Mastering Delphi” (a hefty tome of 1,500 pages). This was not my first writ-
ing experience, as I had previously written works on Borland C++ and the
Object Windows Library.

Over the last few years, beside my continuous involvement in the Delphi
community, I've also devoted a lot of time to XML-related technologies and
XSLT, with web services (including SOAP and REST implementations),
JavaScript and AJAX, and other Web 2.0 technologies. After a break, I got
back to writing by self-publishing my books, not only on Delphi, as I ended
up also with a volume on social networks.

Marco Cantù, Delphi 2009 Handbook

Introduction - 17

Beside writing, I keep myself busy with consulting (mostly on applications
architectures), helping selling Delphi in Italy, doing code reviews, Delphi
mentoring, and general consulting for developers.

I'm also a frequent speaker at Delphi and general developer conferences,
including the new online CodeGear conferences. If you are interested in
inviting me to speak at a public event or give a training session (on Delphi
2009 or any advanced subject) at your company location, feel free to send
me a note over email.

Contact Information
Finally, here is some contact information, with my main web sites (my blog,
my not-so-up-do-date personal site, my company site):
http://blog.marcocantu.com
http://www.marcocantu.com
http://www.wintech-italia.com

My personal web site hosts a specific page devoted to the book, including
updates, source code downloads, and other information:
http://www.marcocantu.com/dh2009

I have an online mailing list based on a Google group you can sign up from
my web site. I also run an online newsgroup with a section devoted to dis-
cuss my books and their content, available on the web (in the section called
“marco cantu”) at:
http://delphi.newswhat.com

Finally, feel free to drop me an email at my public address:
marco.cantu@gmail.com

Marco Cantù, Delphi 2009 Handbook

18 - Introduction

Marco Cantù, Delphi 2009 Handbook

Part I: Unicode - 19

Part I:
 Unicode

The first part of this book focuses on Unicode, the international character
encoding standard that Delphi 2009 supports for the first time. The three
chapters in this part introduce the topic, describe the actual implementa-
tion, and address porting and compatibility issues, respectively.

● Chapter 1: What is Unicode?

● Chapter 2: The Unicode String Type

● Chapter 3: Porting to Unicode

Marco Cantù, Delphi 2009 Handbook

20 - Part I: Unicode

Marco Cantù, Delphi 2009 Handbook

Chapter 1: What is Unicode? - 21

Chapter 1: What
Is Unicode?

Unicode is the name of an international character set, encompassing the
symbols of all written alphabets of the world, of today and of the past, plus a
few more3. The Unicode standard (formally referenced as “ISO/IEC 10646”)
is defined and documented by the Unicode Consortium, and contains over
100,000 characters. Their main web site is located at:
http://www.unicode.org

As the adoption of Unicode is a central element of Delphi 2009 and there
are many issues to address, this chapter focuses only on the theory behind
Unicode and other characters encodings, while the next one will focus on
the key elements of Delphi implementation.

3 Unicode includes also technical symbols, punctuations, and many other characters
used in writing text, even if not part of any alphabet.

Marco Cantù, Delphi 2009 Handbook

22 - Chapter 1: What is Unicode?

Characters from the Past: from
ASCII to ISO Encodings

The American Standard Code for Information Interchange (ASCII) was
developed in the early '60s as a standard encoding of computer characters,
encompassing the 26 letters of the English alphabet, both lowercase and
uppercase, the numbers, common punctuation symbols, and a number of
control characters4.

ASCII uses a 7 bit encoding system to represent 128 different characters.
Only characters between #32 (Space) and #126 (Tilde) have a visual repres-
entation, as show in the following table:

While ASCII was certainly a foundation (with its basic set of 128 characters
that are still part of the core of Unicode), it was soon superseded by exten-
ded versions that used the 8th bit to add another 128 characters to the set.

Now the problem is that with so many languages around the world, there
was no simple way to figure out which other characters to include in the set
(at times indicated as ASCII-8). To make the story short, Windows adopts a
different set of characters, called a code page, with a set of characters
depending on your locale configuration and version of Windows. Beside
Windows code pages there are many other standards based on a similar
paging approach.

4 While most control characters have lost any meaning (like the File Separator or the
Vertical Tab) some like the Carriage Return (#13), Line Feed (#10), Tab (#9), and
Backspace (#8) are still in everyday use.

Marco Cantù, Delphi 2009 Handbook

Chapter 1: What is Unicode? - 23

The most relevant is certainly the ISO 8859 standard, which defines several
regional sets. The most used set (well, the one used in most Western coun-
tries to be a little more precise) is the Latin set, referenced as ISO 8859-1.
Even if partially similar, Windows 1252 code page doesn't fully conform to
the ISO 8859-1 set. Windows adds extra characters like the € symbol, as
we'll see later.

If I keep printing all 8-bit characters, on my computer (that uses Windows
1252 code page by default) I get the following output (yours might be differ-
ent)5:

How did I get this and the previous image? Using a simple Delphi 2009 pro-
gram (called FromAsciiToUnicode) that displays characters on a StringGrid
component, initially with the number of the corresponding columns and
rows painted on the borders. The program forces some type casts to the
AnsiChar type6 to be able to manage traditional 8-bit characters (more on
this in the next chapter):

5 If the system default is a multi-byte code page, the code of this program becomes
meaningless, because most of the characters #$80 through #$FF are lead bytes,
which can't be displayed on their own.

6 As we'll see in detail in the next chapter, in Delphi 2009 the Char type has changed
and the old Char type of Delphi 1 through Delphi 2007 is now called AnsiChar.

Marco Cantù, Delphi 2009 Handbook

24 - Chapter 1: What is Unicode?

procedure TForm30.btnAscii8Click(Sender: TObject);
var
 I: Integer;
begin
 ClearGrid;
 for I := 32 to 255 do
 begin
 StringGrid1.Cells [I mod 16 + 1,
 I div 16 + 1] := AnsiChar (I);
 end;
end;

In previous versions of Delphi you could obtain the same output by writing
the following simpler version (that uses Char rather than AnsiChar for the
conversion):
 for I := 32 to 255 do
 begin
 StringGrid1.Cells [I mod 16 + 1,
 I div 16 + 1] := Char (I);
 end;

I don't think I really need to tell you how messy the situation is with the
various ISO 8859 encodings (there are 16 of them, still unable to cover the
more complex alphabets), Windows page codes, multi byte representations
to cover Chinese and other languages. With Unicode, this is all behind us,
even though the new standard has its own complexity and potential prob-
lems.

Unicode: An Alphabet for the
Entire World

As I mentioned, all this changed with the introduction of Unicode. The idea
behind Unicode (which is what makes it simple) is that every single charac-
ter has its own unique number (or code point, to use the proper Unicode
term). I don't want to delve into the complete theory of Unicode here (if you
want to you can refer to the Unicode book with the complete standard 7), but
only highlight its key points.

7 More information on “The Unicode Standard” book can be found at:
http://www.unicode.org/book/aboutbook.html.

Marco Cantù, Delphi 2009 Handbook

Chapter 1: What is Unicode? - 25

In any case, I'll start by extending the FromAsciiToUnicode program, which
has a third button that displays those same 256 characters (256 minus the
initial 32 control characters and the space character). This is what you'll get
(and this doesn't depend on your locale or Windows page code):

You might expect to see exactly the same sequence of characters, as every-
one knows that the initial portion of the Unicode character set maps the
ASCII sequence, right? This is, in fact, quite wrong! Only the original ASCII-
7 set has a perfect match in Unicode, and most of the other extended charac-
ters also match, but not all of them. The portion between 128 and 160, in
fact, is different (although to be more precise it is different from Microsoft
own interpretation of the Latin 1 code page). If you look at the previous
image8, you might notice a collection of seldom used symbols... but there is
one that (at least in my area of the world) is quite important, the € currency
symbol.

To further test the situation, I've added the following code to the same pro-
gram, again using the two different characters types, AnsiChar and Char:

8 For a more lively demo based on this example see the YouTube video “Delphi does
Unicode”, that I made available in August 2008, during the period that Tiburòn beta
testers were allowed to blog about the new features of the product. Following videos
cover other examples in this chapter. The link is:
http://www.youtube.com/watch?v=BJMakOY8qbw

Marco Cantù, Delphi 2009 Handbook

26 - Chapter 1: What is Unicode?

procedure TForm30.btnEuroClick(Sender: TObject);
var
 aChar: AnsiChar;
 uChar: Char;
begin
 aChar := '€';
 uChar := '€';
 ShowMessage ('€ for AnsiChar is ' +
 IntToStr (Ord (aChar)));
 ShowMessage ('€ for UnicodeChar is ' +
 IntToStr (Ord (uChar)));
end;

Keep in mind that the way this code snippet is compiled depends on the
--codepage compiler option, which (if not specified) defaults to the operat-
ing system code page9. So if you recompile the same code in a different area
of the world, without providing an explicit code page, you'll get a different
compiled program (not just a different output).

Again, the output you'll get might depend on your settings and look some-
what strange... but we'll have to learn to live with it in the Unicode world.
This is what I get:

9 The code page used to compile the program affects only the way it manages the
AnsiChar character, not the Unicode Char. Unicode characters and strings, in fact,
ignore the code page altogether (which is a great reason for using them!)

Marco Cantù, Delphi 2009 Handbook

Chapter 1: What is Unicode? - 27

From Code Points to Bytes
The confusion behind Unicode (what makes it complex) is that there are
multiple ways to represent the same code point (or Unicode character
numerical value) in terms of actual storage, of physical bytes. If the only way
to represent all Unicode code points in a simple and uniform way was to use
four bytes for each code point10 most developers would perceive this as too
expensive in memory and processing terms.

One of the options is to use smaller representations with differing number
of bytes (at least 1 or 2, but possibly up to 4) for the various code points of
the entire Unicode set. This is also called a variable-length representation.
These encodings have names you've probably heard about, like UTF-8 and
UTF-16, and I'll examine them in technical detail in the following section.

There is a common misconception that UTF-16 can map directly all code
points with two bytes, but since Unicode defines over 100,000 code points
you can easily figure out they won't fit. It is true, however, that at times
developers use only a subset of Unicode, to make it fit in a 2-bytes-per-char-
acters fixed-length representation. In the early days, this subset of Unicode
was called UCS-211, now you often see it referenced as Basic Multilingual
Plane (BMP). However, this is only a subset of Unicode (one of many
Planes).

Unicode Code Points and Graphemes
If I really want to be precise, I should include one more concept beyond that
of code points. At times, in fact, multiple code points could be used to rep-
resent a single grapheme (a visual character). This is generally not a letter,
but a combination of letters or letters and symbols. For example, you if have
a sequence of the code point representing the Latin letter a (#$0061) fol-
lowed by the code point representing the grave accent (#$0300), this should
be displayed as a single accented character.

10 In Delphi the Unicode Code Points are represented using the UCS4Char data type,
which is covered in the section “32-bit Characters” of Chapter 2.

11 The 2-byte Universal Character Set (UCS-2) is now considered an obsolete character
encoding. Still, both UTF-16 and UCS-2, map the code points contained within the
BMP in the same way, excluding the 2,048 special surrogate code points.

Marco Cantù, Delphi 2009 Handbook

28 - Chapter 1: What is Unicode?

In Delphi coding terms, if you write the following (available again in the
FromAsciiToUnicode example):
var
 str: String;
begin
 str := #$0061 + #$0300;
 ShowMessage (str);

the message will have one single accented character:

In this case we have two Chars, representing two code points, but only one
grapheme. The fact is that while in the Latin alphabet you can use a specific
Unicode code point to represent the given grapheme (letter a with grave
accent), in other alphabets combining Unicode code points is the only way
to obtain a given grapheme (and the correct output).

Unicode Transformation Formats (UTF)
Few people know that the very common “UTF” term is the acronym of Uni-
code Transformation Format. These are algorithmic mappings, part of the
Unicode standard, that map each code point (the absolute numeric repres-
entation of a character) to a unique sequence of bytes representing the given
character. Notice that the mappings can be used in both directions, convert-
ing back and forth different representations.

The standard defines three of these formats, depending on how many bits
are used to represent the initial part of the set (the initial 128 characters): 8,
16, or 32. It is interesting to notice that all three forms of encodings need at
most 4 bytes of data for each code point.

● UTF-8 transforms characters into a variable-length encoding of 1 to
4 bytes. UTF-8 is popular for HTML and similar protocols, because

Marco Cantù, Delphi 2009 Handbook

Chapter 1: What is Unicode? - 29

it is quite compact when most characters (like tags in HTML) fall
within the ASCII subset12.

● UTF-16 is popular in many operating systems (including Windows)
and development environments. It is quite convenient as most char-
acters fit in two bytes, reasonably compact and fast to process.

● UTF-32 makes a lot of sense for processing (all code points have the
same length), but is memory consuming and has limited use in prac-
tice.

A problem relating to multi-byte representations (UTF-16 and UTF-32) is
which of the bytes comes first? According to the standard, all forms are
allowed, so you can have a UTF-16 BE (big-endian13) or LE (little-endian),
and the same for UTF-32.

Looking at UTF-16
How do we create a table of Unicode characters like those I displayed earlier
for ASCII ones? We can start by displaying code points in the Basic Multilin-
gual Plane above 32 (the usual control characters) and excluding what are
called surrogate pairs. Not all numeric values are true UTF-16 code points,
since there are some non-valid numerical values for characters (called sur-
rogates) used to form a paired code and represent code points above 65535.

As displaying a 256 * 256 grid was quite hard, I've actually kept the grid as is
and added a TreeView control on the side to let you pick an arbitrary block
of 256 code points to display. I've used a TreeView as there are 256 sections
(including the surrogates), so I decided to group them at two levels:

12 Originally UTF-8 was represented by 1 to 6 bytes, to represent any theoretical Uni-
code code point of the future, but it was later but restricted to use only the formal
Unicode definition up to code point 10FFFF. More information, including a map of
the different lengths of code points in UTF-8, on http://en.wikipedia.org/wiki/Utf-8.

13 The big-endian byte serialization has the most significant byte first, the little-endian
byte serialization has the least significant byte first. As we'll see soon, the bytes serial-
ization is often marked in files with a header called Byte Order Mark (BOM).

Marco Cantù, Delphi 2009 Handbook

30 - Chapter 1: What is Unicode?

When the program starts, it fills the TreeView with 16 higher level groups,
each containing 16 second level subgroups, thus providing 256 items, each
of which can display a grid with 256 characters, for a total of 64K code
points (again, not considering those excluded):
procedure TForm30.FormCreate(Sender: TObject);
var
 nTag: Integer;
 I: Integer;
 J: Integer;
 topNode: TTreeNode;
begin
 for I := 0 to 15 do
 begin
 nTag := I * 16;
 topNode := TreeView1.Items.Add (nil,
 GetCharDescr (nTag * 256) + '/' +
 GetCharDescr ((nTag + 15)* 256));
 for J := nTag to nTag + 15 do
 begin
 if (J < 216) or (J > 223) then
 begin
 TreeView1.Items.AddChildObject (
 topNode,
 GetCharDescr(J*256) + '/' +
 GetCharDescr(J*256+255),
 Pointer (J));
 end
 else
 begin
 TreeView1.Items.AddChildObject (
 topNode,
 'Surrogate Code Points',
 Pointer (J));
 end;
 end;
 end;
end;

// helper function
function GetCharDescr (nChar: Integer): string;
begin
 if nChar < 32 then
 Result := 'Char #' + IntToStr (nChar) + ' []'
 else
 Result := 'Char #' + IntToStr (nChar) +
 ' [' + Char (nChar) + ']';
end;

Marco Cantù, Delphi 2009 Handbook

Chapter 1: What is Unicode? - 31

As you can see in the code above, every node of the TreeView gets the num-
ber with its page number or starting position as its data field (generally a
pointer). This is used whenever you select a second-level element in the
TreeView (that is a node that has a parent node) to compute the starting
point of the grid:
procedure TForm30.TreeView1Click(Sender: TObject);
var
 I, nStart: Integer;
begin
 if (TreeView1.Selected.Parent <> nil) then
 begin
 // a second level node
 nCurrentTab := Integer(TreeView1.Selected.Data);
 nStart := nCurrentTab * 256;
 for I := 0 to 255 do
 begin
 StringGrid1.Cells [I mod 16 + 1, I div 16 + 1] :=
 IfThen (I + nStart >= 32, Char (I + nStart), '');
 end;
 end;
end;

Notice the use of the IfThen function to optionally replace the initial 32
characters with an empty string. The starting point of the current TreeView

Marco Cantù, Delphi 2009 Handbook

32 - Chapter 1: What is Unicode?

item is kept in the nCurrentTab form field. This information is needed to
display the code point and its value as a user moves the mouse over the cells
of the grid:
procedure TForm30.StringGrid1MouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer);
var
 gc: TGridCoord;
 nChar: Integer;
begin
 gc := StringGrid1.MouseCoord(X, Y);
 nChar := (gc.Y - 1) * 16 + (gc.X - 1);
 StatusBar1.SimpleText :=
 GetCharDescr (nCurrentTab * 256 + nChar);
end;

As you use the program and browse the various pages of code points in the
various alphabets, you'll often see characters that aren't displayed properly.
This is most probably due to the font you are using as not all fonts provide a
proper representation for the entire Unicode character set. That's why I've
added to the UnicodeMap program the ability to pick a different font
(something achieved by double clicking on the grid). You can find more
information about this issue in the section “Unicode and Fonts and APIs”
later in this chapter.

Unicode Code Point Descriptions
On the Unicode Consortium web site, you can find a lot of information,
including a text file with a written description of a large number of code
points (most of them excluding the unified ideographs for Chinese, Japan-
ese, and Korean). I've used this file to create an extended version of the
UnicodeMap program, called UnicodeData. The user interface is based on
the same structure, but the program reads and parses the UnicodeData.txt14

file, and adds any available character description to the status bar when
moving over the grid:

14 The URL for this file is http://unicode.org/Public/UNIDATA/UnicodeData.txt.
There is second much larger file (I've not used in the demo) for the unified ideo-
graphs, avauilable at http://www.unicode.org/Public/UNIDATA/Unihan.zip.

Marco Cantù, Delphi 2009 Handbook

Chapter 1: What is Unicode? - 33

Parsing the file is not terribly simple, as not all of the Unicode symbols are
present. I resorted to creating a StringList with information in the format
charnumber=description, extracted from the file. The original file uses
semicolons for separating fields and a newline character (alone, not com-
bined with line feed) for each record. After loading the entire file into a
string, I use the following code to parse it and move the two descriptions to
the information section (as at times only one or the other description is rel-
evant):
nPos := 1;
// now parse the unicode data
while nPos < Length (strData) - 2 do
begin
 strSingleLine := ReadToNewLine (strData, nPos);
 nLinePos := 1;
 strNumber := ReadToSemicolon (
 strSingleLine, nLinePos);
 strDescr1 := ReadToSemicolon (
 strSingleLine, nLinePos);
 Skip8Semi (strSingleLine, nLinePos);
 strDescr2 := ReadToSemicolon (
 strSingleLine, nLinePos);

 sUnicodeDescr.Add(strNumber + '=' +
 strDescr1 + ' ' + strDescr2);
end;

This code could be executed in the message handler of a wm_user message
posted to the main form in its OnCreate event handler, to let the system
start up the main form before doing this lengthy operation. The status bar is
updated in the loop above to inform users of the current progress. The loop
has some further termination code, to skip parsing characters above $FFFF.

The information stored in the string list is extracted when you have to dis-
play the description of a character, with this additional code of the
StringGrid1MouseMove method:
 if Assigned (sUnicodeDescr) then
 begin
 strChar := IntToHex (nChar, 4);
 nIndex := sUnicodeDescr.IndexOfName(strChar);
 if nIndex >= 0 then
 StatusBar1.SimpleText := StatusBar1.SimpleText +
 ' -- ' + sUnicodeDescr.ValueFromIndex [nIndex];
 end;

Having information about the code points, the program could also create a
more logical element tree. This is not too difficult for the various alphabets,

Marco Cantù, Delphi 2009 Handbook

34 - Chapter 1: What is Unicode?

but most symbols have a generic name with no indication that they are part
of a given group. Coming out with a proper grouping of all Unicode code
points is possible from reading the various documents15, but not parsing the
UnicodeData.txt file.

Byte Order Mark
Files storing Unicode characters often use an initial header, called Byte
Order Mark (BOM) as a signature indicating the Unicode format being used
and the byte order form (BE or LE). The following table provides a summary
of the various BOM, which can be 2, 3, or 4 bytes long:

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

FE FF UTF-16, big-endian

FF FE UTF-16, little-endian

EF BB BF UTF-8

We'll see in the next chapter how Delphi manages the BOM within its
streaming classes. The BOM appears at the very beginning of a file with the
actual Unicode data immediately following it. So a UTF-8 file with the con-
tent AB contains five hexadecimal values (3 for the BOM, 2 for the letters):
EF BB BF 41 42

Unicode in Win32
Since the early days, the Win32 API (which dates back to Windows NT) has
included support for Unicode characters. Most Windows API functions have
two versions available, an Ansi version marked with the letter A and a wide-
string version marked with the letter W.

15 As we'll see in the next chapter, the new Character unit includes methods for check-
ing whether a Unicode code point is a symbol, a punctuation mark, a space...

Marco Cantù, Delphi 2009 Handbook

Chapter 1: What is Unicode? - 35

As an example, see the following lines from Windows.pas of Delphi 2007:
function GetWindowText(hWnd: HWND; lpString: PChar;
 nMaxCount: Integer): Integer; stdcall;
function GetWindowTextA(hWnd: HWND; lpString: PAnsiChar;
 nMaxCount: Integer): Integer; stdcall;
function GetWindowTextW(hWnd: HWND; lpString: PWideChar;
 nMaxCount: Integer): Integer; stdcall;

function GetWindowText; external user32
 name 'GetWindowTextA';
function GetWindowTextA; external user32
 name 'GetWindowTextA';
function GetWindowTextW; external user32
 name 'GetWindowTextW';

The declarations are identical but use either PAnsiChar or PWideChar to
refer to strings. Notice that the plain version with no string format indica-
tion is just a placeholder for one of them, invariably the 'A' version in past
versions of Delphi (where this code is taken from), while in Delphi 2009 (as
we'll see) the default becomes the 'W' version. Basically, each API function
that takes strings as parameters has two separate versions, while all of the
functions that do not refer to strings have a single one, of course.

Windows 95 (and following versions Windows 98 and ME) implemented
the A functions and provided the W functions as aliases that do Wide to Ansi
conversion. This means those functions generally don't support Unicode,
with some exceptions like TextOutW (which is implemented as a real Uni-
code function on Windows 95/98/ME). On the other hand, Windows NT
and following versions based on it (Windows 2000, XP, and Vista) imple-
ment the W functions, and provide the A functions as aliases doing the Ansi
to Wide conversion (at times, slowing down operations).

Even in past versions of Delphi you could pass a WideString value to a 'W'
API, by calling it explicitly. For example, the UnicodeWinApi program
(which can be compiled both in Delphi2007 and Delphi 2009), has the code:

Marco Cantù, Delphi 2009 Handbook

36 - Chapter 1: What is Unicode?

The first call to the ANSI version of MessageBox displays a message made
of a sequence of question mark symbols, while the second (displayed here)
has the correct output16:

Notice the use of Unicode characters in strings within the source code and
also to name a local variable. This was already supported in Delphi 2006
and 2007 provided you saved the source code file in a Unicode format
(UTF-16 or UTF-8). A further call paints some text in an uncommon alpha-
bet on the form, with the output displayed below. This is the source code,
taken from the editor:

16 The sentence is written in Bangla and means “What is Unicode”, at least according to
http://www.unicode.org/standard/translations/bangla.html. For the variable name I
used part of the sentence... which probably (or hopefully) means nothing!

Marco Cantù, Delphi 2009 Handbook

Chapter 1: What is Unicode? - 37

There are two more important facts to keep in mind about strings in the
Win32 API. The first is that some of the older operating systems (like Win-
dows 95) offer only a partial implementation of the Wide API functions. The
second is that COM used a different approach, with strings in the BSTR
format, mapped in Delphi to the non-reference-counted WideString type17.

Unicode API Call Speed
You might wonder if using Unicode when calling the Windows API would be
slower or faster than using the plain “A” API. Needless to say I had the same
doubt, with Unicode causing some extra memory load, I was wondering if
this move really made sense for programs that don't need Unicode.

In theory, as the only real implementation of the Windows API for Vista and
XP is the Unicode-based one, we should expect a faster execution, as the
code will skip a string conversion during the call. So I tried with the follow-
ing code, which is part of the UniApiSpeed example:
procedure TForm30.btnUserNameClick(Sender: TObject);
var
 I:Integer;
 nSize: DWORD;
 t1: TDateTime;
 str: string;
 pch: PChar;
begin
 nSize := 100;
 SetLength (str, nSize);
 pch := PChar (str);
 t1 := Now;
 for I := 1 to 10000 do
 begin
 GetUserName (pch, nSize);
 end;
 t1 := Now - t1;
 Memo1.Lines.Add ((Sender as TButton).Caption + ' ' +
 FormatDateTime ('ss.zzz', t1));

17 Some more information about the WideString type and its relationship with COM is
available in the section “Unicode Before Delphi 2009” at the end of this chapter.
COM support still relies on the WideString type in Delphi 2009, so little has changed
in that area of the product.

Marco Cantù, Delphi 2009 Handbook

38 - Chapter 1: What is Unicode?

I compiled the same program in Delphi 7 and in Delphi 2009 and I noticed
that the results were almost identical. I tried a similar loop based on the
SetWindowText API call, and in this case I noticed a very odd effect. If I run
the application in the debugger, it takes a 15% less time than the Delphi 7
counterpart, if I run it stand alone it becomes much slower. The problem,
though is that if the program spends any time painting the caption over and
over, its results will be totally modified.

These two tests are probably not very pertinent. I should have tried with
many more other API calls to be able to make a definitive statement, but this
proves that by moving to Unicode you can have a similar or slightly
improved speed in the API calls. You don't gain a lot (at least while using
non-Unicode characters), but you don't incur any extra overhead either18.

UnicodeString Parameters in API calls
Although most Windows API functions taking a string as parameter are
declared in the Windows unit with a PChar parameter, there are some
exceptions to this rule.

The GetTextExtentPoint32, ExtTextOut, LoadKeyboardLayout,
DrawText, SetWindowText, LoadCursor, WinHelp, and HtmlHelp API
declaration have overloaded (and inlined) versions taking a UnicodeString
parameter. I guess this might help to apply the proper conversion in case
you are passing a string, any string, to them (as you'll better understand
after reading about the different string types in Delphi 2009, in the next
chapter).

It is not clear why these functions have this special treatment compared
with the dozens of other Windows API functions that have PChar paramet-
ers. One of the reasons might be the increased compatibility between VCL
for Win32 and VCL for .NET if the string type is used rather than a PChar.

18 As we'll see in the next chapter there is indeed a potential major overhead related
with implicit string conversions done by the Delphi compiler. This is one of the topics
covered in the section “Conversions Slow Down the Code” of Chapter 2.
Also notice that some of the Ansi-related string functions were implemented in
Delphi 2007 by calling Windows API routines that required conversions to and then
back from Unicode. Calls to these routines in Delphi 2009 should be much faster, as
detailed by Jan Goyvaerts on this blog at: http://www.micro-
isv.asia/2008/09/speed-benefits-of-using-the-native-win32-string-type.

Marco Cantù, Delphi 2009 Handbook

Chapter 1: What is Unicode? - 39

Unicode and Fonts and APIs
Another important fact to keep in mind is that whilst Windows does indeed
support Unicode, it does so in different ways in different versions. The Win-
dows 9x (an acronym meaning 95, 98, or ME – Millennium Edition) series
has limited support for Unicode. If you have Windows 2000, Windows XP,
or some of the server operating system versions, you can take advantage of
the Supplemental Language Support. This can be installed in the Regional
and Language options of the Control Panel. This extra support comes mostly
in the form of extended (or Unicode-enabled) fonts. Vista has extended Uni-
code support by default.

When Windows XP and Vista need to display a Unicode code point, and this
code point is not available in the current font, at times they perform “font
substitution”, that is they display the code point in a different font19. This
depends on the text display API being called (DrawText, TextOut,
ExtTextOut behave differently), on the font you are using, and on the given
code points. That's why using a complete Unicode font is a good idea20.

If you are interested in more details, you can have a look at the UniFont-
Subst example, that basically draws a set of strings with different fonts and
different API calls on its form. The program uses three standard fonts
(Times New Roman, Tahoma, and Arial) displayed top to bottom, and the
three API calls mentioned above displayed left to right. This is one of the
three portions (there is one for each font) of the painting code:
Canvas.Font.Name := 'Times New Roman';
aRect := Rect(10, 60, 250, 100);
DrawText(Canvas.Handle, PChar (str1), Length (str1),
 aRect, DT_LEFT or DT_SINGLELINE or DT_EXPANDTABS
 or DT_NOPREFIX);
TextOut (Canvas.Handle, 260, 60, PChar (str1),
 Length (str1));
aRect := Rect(510, 60, 750, 100);
ExtTextOut (Canvas.Handle, 510, 60, 0, aRect,
 PChar (str1), Length (str1), nil);

19 You can find a lot of detailed information about font substitution done by different
API calls in this Microsoft article:
http://www.microsoft.com/globaldev/getwr/steps/wrg_font.mspx

20 For information and availability of Unicode fonts for Windows, you can refer to Alan
Wood’s Unicode Resources (which dates a few years back, but is kept up to date) at:
http://www.alanwood.net/unicode/fonts.html.

Marco Cantù, Delphi 2009 Handbook

40 - Chapter 1: What is Unicode?

The string is defined using a sequence of consecutive Unicode code points
starting from a random position:
var
 str1: string;
 nPoint: Word;
 I: Integer;
begin
 nPoint := 32 + random (1024*64 - 32 - numberOfChars);
 if (nPoint >= $D800 - numberOfChars) and
 (nPoint <= $DFFF) then
 begin
 // retry and skip
 PaintFonts;
 Exit;
 end;

 str1 := ConvertFromUtf32(UCS4Char (nPoint));
 for I := 1 to numberOfChars do
 str1 := str1 + ConvertFromUtf32(
 UCS4Char (nPoint + I));

In the program you can paint the form once or turn on a timer for automatic
consecutive redraws. In most cases, you'll see the same string displayed 9
times. Quite often, though, you'll see that the text is not displayed properly
when using some fonts (most commonly Tahoma) but is replaced by square
blocks. In other cases, you'll see that some of the API calls (DrawText in
particular) can display the code points anyway, but by replacing the font
with another one. Below is a screen shot in which you can see both cases at
once:

Marco Cantù, Delphi 2009 Handbook

Chapter 1: What is Unicode? - 41

Unicode Before Delphi 2009
If Unicode support in the core of the language (for the string type) and
throughout the runtime library and visual component library (VCL) is cer-
tainly a brand new feature in Delphi 2009, partial support for Unicode has
been part of Delphi for many years now.

For many versions, mostly to support COM, Delphi had a WideChar data
type (16-bit characters) and a WideString data type (strings made of
WideChar characters). However, the WideString type was not (and still is
not) reference counted and is far less efficient than regular Delphi strings. It
is merely an encapsulation of the COM BSTR data type21.

There are also several units and classes with specific support for
WideStrings, including the feature-rich WideStrUtils unit (which also
includes a good amount of UTF-8-related functions), the
TWideStringList class, and extensive WideString support in the
TDataSet and TField classes.

What's Next
I don't want to delve into the details of features that change considerably in
Delphi 2009 here and we'll have time to cover them later in the book. Now it
is time to start looking at the actual implementation for Unicode strings, the
new UnicodeString type. There are many changes in using strings in Delphi
2009, that's why the next chapter is one of the longest in the book.

21 WideString is a COM BSTR that uses UTF-16 in Windows 2000 and above, while it is
based on UCS-2 in Win9x and NT. Some more details are available at:
 http://msdn.microsoft.com/en-us/library/ms221069.aspx

Marco Cantù, Delphi 2009 Handbook

42 - Chapter 1: What is Unicode?

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 43

Chapter 2: The
Unicode String

Type

As you certainly know, one of the most far-reaching new features of Delphi
2009 is the introduction of a new string type, UnicodeString, which is also
the type aliased by the string type. Every time you write “string” in your
code, you are now in fact referring to UnicodeString, whilst in past versions
of Delphi (except Delphi 1) you were referring to AnsiString.

Along with Char being an alias of WideChar, this is a significant change,
affecting your entire code base. That's why a single chapter won't be enough
to explain everything you need to know. I'll cover all of the new string type
features here, but leave the many and unavoidable issues related with port-
ing existing Delphi code to a Unicode-enabled version of the CodeGear
compiler to the next chapter.

Marco Cantù, Delphi 2009 Handbook

44 - Chapter 2: The Unicode String Type

From AnsiChar to WideChar
For some time, Delphi included two separate data types representing char-
acters:

● AnsiChar, with an 8-bit representation (accounting for 256 differ-
ent symbols), interpreted depending on your code page;

● WideChar, with a 16-bit representation (accounting for 64K differ-
ent symbols)22.

In this respect, nothing has changed in Delphi 2009. What is different is
that the Char type used to be an alias of AnsiChar and is now an alias of
WideChar. Every time the compiler sees Char in your code, it reads
WideChar. Notice that there is no way to change this new compiler default23.

This is quite a change, impacting a lot of source code and with many rami-
fications. For example, the PChar pointer is now an alias of PWideChar,
rather than PAnsiChar, as it used to be. We'll see how this affects the calls
to Windows API functions in a later section in this chapter.

Char as an Ordinal Type
The new large Char type is still an ordinal type, so you can use Inc and Dec
on it, write for loops with a Char counter, and the like.
var
 ch: Char;
begin
 ch := 'a';
 Inc (ch, 100);
 ...
 for ch := #32 to High(Char) do
 str := str + ch;

22 WideChar is simply a 16-bit unsigned integer without any specific character encoding
scheme attached. When used in a UnicodeString, though, a WideChar can be inter-
preted as a surrogate, so that two WideChar can be bound together to represent a
single Unicode code point. More about this in the section “UnicodeString and Uni-
code”.

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 45

These code snippets are part of different methods of the TestChar example.
The only thing that might get you into some (limited) trouble is when you
are declaring a set based on the entire Char type:
var
 CharSet = set of Char;
begin
 charSet := ['a', 'b', 'c'];
 if 'a' in charSet then
 ...

In this case the compiler will assume you are porting existing code to Delphi
2009, decide to consider that Char as an AnsiChar (as a set can only have
256 elements at most24) and issue a warning message:
W1050 WideChar reduced to byte char in set expressions.
Consider using 'CharInSet' function in 'SysUtils' unit.

The code will probably work as expected, but not all existing code will easily
map, as it is not possible to obtain a set of all the characters any more. If this
is what you need, you'll have to change your algorithm (possibly following
what's suggested by the warning, but I'll get to that in ample detail in the
section “Watch Out for Set of Char” of the next chapter, focused on porting
existing code to Delphi 2009).

If what you are looking for, instead, is to suppress the warnings (compiling
the five lines of code above causes two of them) you can write:
var
 charSet: set of AnsiChar; // suppress warning
begin
 charSet := ['a', 'b', 'c'];
 if AnsiChar('a') in charSet then // suppress warning
 ...

23 As with the string type, the Char type is mapped to a specific data type in a fixed and
hard-coded way. Developers have asked for a compiler directive to be able to switch,
but this would cause a nightmare in terms of QA, support, package compatibility, and
much more. You still have a choice, as you can convert your code to use a specific
type, such as AnsiChar.

24 If you try declaring a large set of, say, a range of Integers (like I did in some commen-
ted code of the CharTest example) you'll get the error:
E2028 Sets may have at most 256 elements.

Marco Cantù, Delphi 2009 Handbook

46 - Chapter 2: The Unicode String Type

Converting with Chr
Notice also that you can convert a numeric value to a character using a type
cast to AnsiChar or WideChar, but also relying on the classic Pascal tech-
nique, the use of the Chr compiler magic function (which can be considered
as the opposite of Ord). This standard magic function has been expanded to
take a word as parameter, rather than a byte.

Notice, though, that unlike character literals (covered in the section “String
and Character Literals” later in this chapter), calls to Chr are now always
interpreted in the Unicode realm. So if you port code like:
Chr (128)

from Delphi 2007 to Delphi 2009 you might be in for a surprise. If you use
#128, instead, you might get a different result or not depending on your
code page.

32-bit Characters
Although the default Char type is now mapped to WideChar, it is worth noti-
cing that Delphi defines also a 4-byte character type, UCS4Char, defined in
the System unit as:
type
 UCS4Char = type LongWord;

While this type definition and the corresponding one for UCS4String
(defined as an array of UCS4Char) were already in Delphi 2007, the relev-
ance of the UCS4Char data type in Delphi 2009 comes from the fact it is now
used significantly in several RTL routines, including those of the new Char-
acter unit discussed next.

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 47

 The New Character Unit
To better support the new Unicode characters (and also Unicode strings, of
course) Delphi 2009 introduces a brand new RTL unit, called Character25.
The unit defines the TCharacter sealed class, which is a basically collection
of static class functions26, plus a number of global routines mapped to the
public (and some of the private) functions of the class.

The unit also defines two interesting enumerated types. The first is called
TUnicodeCategory and maps the various characters in broad categories
like control, space, uppercase or lowercase letter, decimal number, punctu-
ation, math symbol, and many more. The second enumeration is called
TUnicodeBreak and defines the family of the various spaces, hyphen, and
breaks.

The TCharacter sealed class has over 40 methods that either work on a
stand-alone character or one within a string for:

● Getting the numeric representation of the character
(GetNumericValue).

● Asking for the category (GetUnicodeCategory) or checking it
against one of the various categories (IsLetterOrDigit,
IsLetter, IsDigit, IsNumber, IsControl, IsWhiteSpace,
IsPunctuation, IsSymbol, and IsSeparator)

● Checking if it is lowercase or uppercase (IsLower and IsUpper) or
converting it (ToLower and ToUpper)

● Verifying if it is part of a UTF-16 surrogate pair (IsSurrogatePair,
IsSurrogate, IsLowSurrogate, and IsHighSurrogate)

● Converting it to and from UTF32 (ConvertFromUtf32 and
ConvertToUtf32)

The global functions are almost an exact match of these static class methods,
some of which correspond to existing Delphi RTL functions even if generally
with different names. There are overloads of some of the basic RTL func-

25 The “Character” name for a unit seems somewhat out of sync with the general nam-
ing rules adopted by Delphi's RTL, where “Utils” is often the at the end of collection
of functions. It maps to the fact that there is indeed a class inside the unit, called
TCharacter, although it is a quite a strange class.

26 For the definition of static class methods and sealed classes see, among other sources,
my Delphi 2007 Handbook.

Marco Cantù, Delphi 2009 Handbook

48 - Chapter 2: The Unicode String Type

tions working on characters, with extended versions that call the proper
Unicode-enabled code. For example, in the CharTest program I've added the
following snippet for trying to convert an accented letter to uppercase:
var
 ch1: Char;
 ch2: AnsiChar;
begin
 ch1 := 'ù';
 Memo1.Lines.Add ('WideChar');
 Memo1.Lines.Add ('UpCase ù: ' + UpCase(ch1));
 Memo1.Lines.Add ('ToUpper ù: ' + ToUpper (ch1));

 ch2 := 'ù';
 Memo1.Lines.Add ('AnsiChar');
 Memo1.Lines.Add ('UpCase ù: ' + UpCase(ch2));
 Memo1.Lines.Add ('ToUpper ù: ' + ToUpper (ch2));

The traditional Delphi code (the UpCase on the AnsiChar version) handles
ASCII characters only, so it won't convert the character27. The same is still
true (probably for backward compatibility reasons) if you pass a WideChar
to it. The ToUpper function works properly (it ends up calling the
CharUpper function of the Windows API):
WideChar
UpCase ù: ù
ToUpper ù: Ù
AnsiChar
UpCase ù: ù
ToUpper ù: Ù

Notice you can keep your existing Delphi code, with the UpCase call on a
Char, and it will keep the standard Delphi behavior.

For a better demo of the specific Unicode-related features introduced by the
Characters unit, you can see the btnUTF16Click method of the CharTest
example, which defines a string as28:
var
 str1: string;
begin
 str1 := '1.' + #9 + ConvertFromUtf32 (128) +
 ConvertFromUtf32($1D11E);

27 The same is true for the UpperCase function, which handles only ASCII, while
AnsiUpperCase handles everything in Unicode, despite the name.

28 Unicode code point $1D11E is musical symbol G clef.

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 49

The program then makes the following tests (all returning True) on the vari-
ous characters of the string:
 TCharacter.IsNumber(str1, 1)
 TCharacter.IsPunctuation (str1, 2)
 TCharacter.IsWhiteSpace (str1, 3)
 TCharacter.IsControl(str1, 4)
 TCharacter.IsSurrogate(str1, 5)

Finally notice that the IsLeadChar function of SysUtils has been modified
to handle Unicode surrogate pairs, as well as other related functions used to
move to the next character of a string and the like. I'll use some of these
functions while working with a string with a surrogate pair in the section
“UnicodeString and Unicode.”

Of String and UnicodeString
The change in the definition of the Char type is important because it is tied
to the change in the definition of the string type. Unlike characters, though,
string is mapped to a brand new data type that didn't exist before, called
UnicodeString. As we'll see, its internal representation is also quite different
from that of the classic AnsiString29 type.

As there was already a WideString type in the language, representing strings
based on the WideChar type, why bother defining a new data type?
WideString was (and still is) not reference counted and is extremely poor in
terms of performance and flexibility (for example, it uses the Windows
global memory allocator rather than the native FastMM4).

Like AnsiString, UnicodeString is reference counted, uses copy-on-write
semantics and is quite performs quite well. Unlike AnsiString, Uni-
codeString uses two-bytes per character30 and is based on UTF-16.

29 I'm using the specific terms classic AnsiString type, to refer to the string type as it
used to work from Delphi 2 until Delphi 2007. AnsiString type is still part of Delphi
2009, but it has a modified behavior, so when referring to its past structure I'll use
the term classic AnsiString.

30 Actually UTF-16 is a variable length encoding, and at times UnicodeString uses two
WideChar surrogate elements (that is, four bytes) to represent a single Unicode code
point.

Marco Cantù, Delphi 2009 Handbook

50 - Chapter 2: The Unicode String Type

The string type is now mapped to UnicodeString in a hard-coded way as is
the Char type and for the same reasons. There is no compiler directive or
other trick to change that. If you have code that needs to continue to use the
old string type, just replace it with an explicit declaration of the AnsiString
type.

The Internal Structure of Strings
One of the key changes related to the new UnicodeString type is its internal
representation. This new representation, however, is shared by all refer-
ence-counted string types, UnicodeString and AnsiString, but not by the
non-reference counted string types, including the ShortString31 and
WideString types.

The representation of the classic AnsiString type was the following:

-8 -4 String reference address

Ref count length First char of string

The first element (counting backwards from the beginning of the string
itself) is the Pascal string length, the second element is the reference count.
In Delphi 2009 the representation for reference-counted strings becomes:

-12 -10 -8 -4 String reference address

Code page Elem size Ref count length First char of string

Beside the length and reference count, the new fields represent the element
size and the code page. While the element size is used to discriminate
between AnsiString and UnicodeString, the code page makes sense in par-
ticular for the AnsiString type (as it works in Delphi 2009), as the
UnicodeString type has the fixed code page 1200.

31 ShortString is the name of the traditional Pascal string type, a string of AnsiChar lim-
ited to 255 characters because it uses a length byte as first element. The ShortString
type was the original string definition in Delphi 1. Since Delphi 2 introduced refer-
ence-counted long strings, the use of ShortString has declined, but there are specific
cases in which they are nice to use and perform better.

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 51

A corresponding supporting data structure is declared in the implementa-
tion32 section of System unit as:
type
 PStrRec = ^StrRec;
 StrRec = packed record
 codePage: Word;
 elemSize: Word;
 refCnt: Longint;
 length: Longint;
 end;

With the overhead of a string going from 8 bytes to 12 bytes, one might won-
der if a more compact representation wouldn't be more effective, although
the newer fields are more compact than the traditional ones (that could be
changed only at the expense of compatibility).

This is a classic trade-off between memory and speed: by storing data in dif-
ferent memory locations (and not using portions of a single location) you
gain extra runtime speed, although this is costing extra memory for each
and every string you create.

While in the past you had to use low-level pointer-based code to access to
the reference count, the Delphi 2009 RTL adds some handy functions to
access the various string metadata:
function StringElementSize(const S: UnicodeString): Word;
function StringCodePage(const S: UnicodeString): Word;
function StringRefCount(const S: UnicodeString): Longint;

There is also a new helper functions in the SysUtils unit, called
ByteLength, that returns the size of a UnicodeString in bytes ignoring the
StringElementSize attributes (so, oddly enough, it won't work with string
types other than UnicodeString).

As an example, you can create a string and ask for some information about
it, as I did in the StringTest example:
var
 str1: string;
begin
 str1 := 'foo';
 Memo1.Lines.Add ('SizeOf: ' + IntToStr (SizeOf (str1)));

32 As it is in the implementation section you cannot use it in your code, which is under-
standable for an internal data structure that's implementation specific and subject to
change. There are helper functions to access the information you'll generally need to
use.

Marco Cantù, Delphi 2009 Handbook

52 - Chapter 2: The Unicode String Type

 Memo1.Lines.Add ('Length: ' + IntToStr (Length (str1)));
 Memo1.Lines.Add ('StringElementSize: ' +
 IntToStr (StringElementSize (str1)));
 Memo1.Lines.Add ('StringRefCount: ' +
 IntToStr (StringRefCount (str1)));
 Memo1.Lines.Add ('StringCodePage: ' +
 IntToStr (StringCodePage (str1)));
 if StringCodePage (str1) = DefaultUnicodeCodePage then
 Memo1.Lines.Add ('Is Unicode');
 Memo1.Lines.Add ('Size in bytes: ' +
 IntToStr (Length (str1) * StringElementSize (str1)));
 Memo1.Lines.Add ('ByteLength: ' +
 IntToStr (ByteLength (str1)));

This program produced output similar to the following:
SizeOf: 4
Length: 3
StringElementSize: 2
StringRefCount: -1
StringCodePage: 1200
Is Unicode
Size in bytes: 6
ByteLength: 6

The code page returned by a UnicodeString is 1200, a number stored in the
global variable DefaultUnicodeCodePage. In the code above (and its out-
put) you can clearly notice that there isn't a direct call to determine the
length of a string in bytes, since Length returns the number of characters.

Of course, you can (in general) multiply this by the size in bytes of each
character, using the expression:
Length (str1) * StringElementSize (str1)

Not only can you ask a string for information, but you can also change some
of it. A low-level way to convert a string is to call the SetCodePage proced-
ure (an operation applicable only to a RawByteString type, as we'll see),
which can either only adjust the code page to the real one or perform a full
string conversion. I'll use this procedure in the section “String Conversions”.

UnicodeString and Unicode
Needless to say the new string type (or new UnicodeString type, to be more
precise) maps to the Unicode character set. If you've read the previous
chapter, the question becomes, “which flavor of Unicode?”

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 53

It should not be surprising to learn that the new string type uses, as I've
already mentioned, UTF-1633. This makes a lot of sense for many reasons,
the most significant being that this is the native string type managed by the
Windows API in recent versions of the operating system.

As we've seen in the section covering the WideChar type in Delphi 2009, the
new TCharacter support class (not only used for WideChar but also for
UnicodeString processing) has full support for UTF-16 and surrogate pairs.
What I didn't mention in that section is that this has the noticeable side
effect of making the number of WideChar elements of a string different
from the number of Unicode code points it contains, as a single Unicode
code point can be represented by a surrogate pair (that is, two WideChar).

A way to create a string with surrogate pairs is to use the
ConvertFromUtf3234 function that returns a string with the surrogate pair
(two WideChar) in the proper circumstances, like the following:
var
 str1: string;
begin
 str1 := 'Surr. ' + ConvertFromUtf32($1D11E);

Now if you ask for the string length, you'll get 8, which is the number of
WideChar, but not the number of logical Unicode code points in the string.
If you print the string you get the proper effect (well, at least Windows will
generally show one square block as placeholder of the surrogate pair, rather
than two).

As demonstrated by the btnSurrogateClick method of the main form of
the StringTest example, computing the number of logical Unicode code
points might be more complex than you'd expect:
n := CharToByteLen (str1, Length (str1) - 1);
CountChars (str1, Length (str1), cChar, cByte);
n := cChar – 1;

A related issue is what happens when looping on each character of the
string. A standard for loop or a for-in cycle will just let you work on each
WideChar element of the string, not each logical Unicode code point. So you

33 More precisely, the UnicodeString type in stored in memory as a UTF-16 string with a
little endian representation, or UTF-16 LE.

34 In the code of ConvertFromUtf32 (or more precisely in the ConvertFromUtf32
class method of the TCharacter class it calls)you can see the actual algorithm used
for mapping Unicode code points into surrogate pairs. Interesting reading if you are
interested in the details.

Marco Cantù, Delphi 2009 Handbook

54 - Chapter 2: The Unicode String Type

might have to use a while loop based on the NextCharIndex function or
adapt the for loop checking for surrogates:
if TCharacter.IsHighSurrogate (str1 [I]) then
 Memo1.Lines.Add (str1 [I] + str1 [I+1])

The complete listing for both cases is available in the same StringTest
example, and not listed here as in most cases you can assume to work with
the BMP (Basic Multilingual Plane) that treats each WideChar of a Unicode
string as a single code point35.

The UCS4String type
There is also another string type that you can use to handle a series of Uni-
code code points, the UCS4String type. This data type represents a dynamic
array of 4-bytes characters (the UCS4Char type). As such, it has no reference
counting or copy-on-write support, and very little RTL support.

Although this data type (that was already available in Delphi 2007) can be
used in specific situations, it is not particularly suited for general circum-
stances. It certainly can be a memory waster, as not only strings use 4 bytes
per character, but you can end up with multiple copies in memory.

The Many String Types
Along with the introduction of the new UnicodeString type, the updated
internal representation shared by all string types (including the AnsiString
type) makes room for some extra improvements in string management. The
Delphi R&D team took advantage of this new internal representation (and
all the work they did at the compiler level to enhance string management) to
actually provide you with multiple data types and even a brand new string
type definition mechanism.

35 The fact that two Unicode code points can be displayed as a single grapheme (see the
section “Unicode Code Points and Graphemes” in Chapter 1) makes it even harder to
map the number of WideChar in a Unicode string to the number of display charac-
ters.

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 55

The predefined reference counted36 string types, in addition to Uni-
codeString, are:

● AnsiString is a single-byte-per-character string type based on the
current code page of the operating system, closely matching the
classic AnsiString of past versions of Delphi;

● UTF8String is a string based on the variable character length UTF-
8 format;

● RawByteString is an array of characters with no code page set, on
which no character conversion is accomplished by the system (thus
partially resembling the classic AnsiString, when used as a pure
character array).37

The type definition mechanism is revealed when you look at the definition
of these new string types:
type
 UTF8String = type AnsiString(65001);
 RawByteString = type AnsiString($FFFF);

In this section I'll cover the AnsiString and custom string types and then the
UTF8String type. I'll focus on RawByteString in the following section cover-
ing string conversions, as you'll generally use this string type to avoid
conversions.

The New AnsiString Type
Differently from the past, the new AnsiString type string carries one further
piece of information, the code page of the characters in the string. The
DefaultSystemCodePage variable defaults to CP_ACP, the current Win-
dows code page, but it could be modified by calling the special procedure
SetMultiByteConversionCodePage. You can do this to force an entire
program to work (by default) with characters in a given code page (that the
operating system installation must support, of course).

36 This excludes the non-reference counted string types, which include the ShortString,
WideString, and UCS4String types.

37 With byte arrays available (as covered in the next chapter) you should try to move to
the more specific construct, although a RawByteString might let you migrate your ex-
isting code with less effort.

Marco Cantù, Delphi 2009 Handbook

56 - Chapter 2: The Unicode String Type

In general, instead, you'd either stick to the current code page or change it
for individual strings, calling the SetCodePage procedure (introduced
earlier while talking about characters and code pages). This procedure can
be called in two different ways. In the first case, you change the code page of
a string (maybe loaded by a separate file or socket) because you know its
format. In the second case, you can call it to convert a given string
(something that happens automatically when assigning a string to one of a
different code page, as discussed later).

Although you can keep using the AnsiString type to have a more compact in-
memory representation of strings, in most cases you'd really want to convert
your code to using the new UnicodeString type. That is, keep your strings
declared with the generic string type. Still, there are circumstances in which
using a specific string type is necessary. For example, when loading or sav-
ing files, moving data from and to a database, using Internet protocols
where the code must remain in an 8-bit per character format. In all those
cases convert your code to use AnsiString38.

Creating a Custom String Type
Beside using the new AnsiString type, which is tied to the default code page
used when compiling the application, you can use the same mechanism to
define your own custom string type. For example, you can define a Latin-1
string type (as I've done in the LatinTest example) by writing:
type
 Latin1String = type AnsiString(28591);

procedure TFormLatinTest.btnNewTypeClick(
 Sender: TObject);
var
 str1: Latin1String;
begin
 str1 := 'a string with an accent: Cantù';
 Log ('String: ' + str1);

You can use this string type as any other one, but it will be tied to a specific
code page. So if you use this string type, when you convert a Latin1String
to a UnicodeString (for example, to display it in a call to Log above), the
Delphi compiler will add a conversion call. The last line of the code snippet

38 More porting techniques will be covered in the Chapter 3.

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 57

above has a hidden call to _UStrFromLStr, which ends up calling more
internal functions of the System unit, up to the real conversion operation
performed by the MultiByteToWideChar Windows API. This is the
sequence of calls39:
procedure _UStrFromLStr(var Dest: UnicodeString;
 const Source: AnsiString);
procedure InternalUStrFromPCharLen(
 var Dest: UnicodeString; Source: PAnsiChar;
 Length: Integer; CodePage: Integer);
function WCharFromChar(WCharDest: PWideChar;
 DestChars: Integer; const CharSource: PAnsiChar;
 SrcBytes: Integer; CodePage: Integer): Integer;
function MultiByteToWideChar(CodePage, Flags: Integer;
 MBStr: PAnsiChar; MBCount: Integer;
 WCStr: PWideChar; WCCount: Integer): Integer; stdcall;
 external kernel name 'MultiByteToWideChar';

The Windows API can perform the proper conversions, but these are poten-
tially lossy conversions, as even some characters available in the various
Windows code pages cannot be represented in Latin1. An example would be
the Euro currency symbol, another smart quotes.

The btnNewTypeClick method above continues showing some more details
of the string:
 Log ('Last char: ' + IntToStr (
 Ord (str1[Length(str1)])));
 Log('ElemSize: ' + IntToStr (StringElementSize (str1)));
 Log('Length: ' + IntToStr (Length (str1)));
 Log ('CodePage: ' + IntToStr (StringCodePage (str1)));

Running this code produces the following output:
Last char: 249
ElemSize: 1
Length: 30
CodePage: 28591

To prove that my new custom string type in treated differently than the
standard AnsiString type (at least on my computer and with my locale), I've
written a test method in the LatinTest project that adds the same upper end
characters (from #128 to #255) to both an AnsiString and a Latin1String,
showing them on a Memo in groups:

39 As we'll see later in the section “Converting Strings” these conversions can consider-
ably slow down string operations. That's why the compiler will emit warnings for sim-
ilar implicit conversion operations.

Marco Cantù, Delphi 2009 Handbook

58 - Chapter 2: The Unicode String Type

procedure TFormLatinTest.btnCompareCharSetClick(
 Sender: TObject);
var
 str1: Latin1String;
 str2: AnsiString;
 I: Integer;
begin
 for I := 128 to 255 do
 begin
 str1 := str1 + AnsiChar (I);
 str2 := str2 + AnsiChar (I);
 end;

 for I := 0 to 15 do
 begin
 Log (IntToStr (128 + I*8) + ' - ' +
 IntToStr (128 + I*8 + 7));
 Log ('Lati: ' + Copy (str1, 1 + i*8, 8));
 Log ('Ansi: ' + Copy (str2, 1 + i*8, 8));
 end;
end;

The initial part of the output highlights the differences among the two sets
(again, the result you'll see might vary depending on your own locale):
128 - 135

 Lati: ?,f".??
 Ansi: €‚ƒ„…†‡

136 - 143
 Lati: ^?S<OZ
 Ansi: ˆ‰Š‹ŒŽ

144 - 151
 Lati: ''"".--
 Ansi: ‘’“”•–—

152 - 159
 Lati: ~Ts>ozY
 Ansi: ˜™š›œžŸ

Having said this, at least at my latitude, a far more interesting example
would be to use the code page of a non Latin alphabet, like Cyrillic. As an
example, I defined a second custom string type in the LatinTest project:
type
 CyrillicString = type Ansistring(1251);

You can use this string in a very similar fashion of the previous code snippet,
but the interesting part is to use the high-order characters, those with a
numeric value over 127. I've picked a few with a for loop:
procedure TFormLatinTest.btnCyrillicClick(
 Sender: TObject);

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 59

var
 str1: CyrillicString;
 I: Integer;
begin
 str1 := 'a string with an accent: Cantù';
 Log ('String: ' + str1);
 Log ('Last char: ' + IntToStr (
 Ord (str1[Length(str1)])));
 Log('ElemSize: ' + IntToStr (StringElementSize (str1)));
 Log('Length: ' + IntToStr (Length (str1)));
 Log ('CodePage: ' + IntToStr (StringCodePage (str1)));

 str1 := '';
 for I := 150 to 250 do
 str1 := str1 + CyrillicString(AnsiChar (I));
 Log ('High end chars: ' + str1);
end;

The output of this method looks like this:
String: a string with an accent: Cantu
Last char: 117
ElemSize: 1
Length: 30
CodePage: 1251

 High end chars: –—™љ›њќћџ ЎўЈ¤Ґ¦§Ё©Є«¬®Ї°
±Ііґµ¶·ё№є»јЅѕїАБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийк
лмнопрстуфхцчшщъ

You can notice that the accented letter has been converted to the corres-
ponding non-accented version, as the original value was not available40. The
string constant is a Unicode string and the assignment to str1 performs an
implicit conversion. In fact, the numeric value of the last character is differ-
ent.

Also this time the high-end characters are completely different. To obtain
the desired effect, consider you have to write the double cast:
CyrillicString(AnsiChar (I))

If you simply concatenate the characters in the string and convert it after-
wards, they'll be treated as Unicode characters.

40 The WideCharToMultiByte behind the conversion tries to fail gracefully in certain
situations. For example, smart quotes degrade into straight quotes instead of ques-
tion marks and the accented letter of the sample code lost its accent.

Marco Cantù, Delphi 2009 Handbook

60 - Chapter 2: The Unicode String Type

Managing UTF-8 Strings
One of the side effect of the new internal structure for string types, is that we
can now also manage strings in the UTF-8 format in a more native way.
Unlike the past, when UTF8String was simply an alias of the string type, the
new type is now fully recognized: conversions are automatic and all of the
existing UTF-8 string manipulation routines have been ported to use the
new specific types.

Consider this trivial code (part of the Utf8Test example):
var
 str8: Utf8String;
 str16: string;
begin
 str8 := 'Cantù';
 Memo1.Lines.Add('UTF-8');
 Memo1.Lines.Add('Length: ' + IntToStr (Length (str8)));
 Memo1.Lines.Add('5: ' + IntToStr (Ord (str8[5])));
 Memo1.Lines.Add('6: ' + IntToStr (Ord (str8[6])));

 str16 := str8;
 Memo1.Lines.Add('UTF-16');
 Memo1.Lines.Add('Length: ' + IntToStr (Length (str16)));
 Memo1.Lines.Add('5: ' + IntToStr (Ord (str16[5])));

As you might expect, the str8 string has a length of 6 (meaning 6 bytes),
while the str16 string has a length of 5 (meaning 10 bytes, though). Notice
that Length invariably returns the number of string elements, which in case
of variable-length representations doesn't match the number of Unicode
code points represented by the string. This is the output of the program:
UTF-8
Length: 6
5: 195
6: 185

UTF-16
Length: 5
5: 249

The reason is that, as we saw in the last chapter, UTF-8 strings use a vari-
able length implementation, so that characters outside the initial 7-bit ANSI
space take at least two characters. This is the case with the accented u above.
Assigning the same UTF-8 string to an AnsiString variable, and running
similar code (again in the Utf8Test example), gives the following:

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 61

ANSI
Length: 5
5: 249

However this time the string length of 5 really means 5 bytes and not just 5
characters.

The support for the UTF-8 format might not be as complete as that for UTF-
16, the native string implementation for Delphi 2009, but has been
enhanced in very significant ways. There are specific routines for UTF-8
manipulation in the WideStrUtils unit, but also full support for streaming
text files in this format41. What's core, though, is the fact you can work on
such a string and show it in any control without having to perform an expli-
cit conversion (and having to remember if and when to perform one); that
certainly helps a lot.

Even if some operations on UTF-8 strings might be slow, because of extra
conversions to and from the UnicodeString type, having a specific data type
rather than an alias type not enforced by the compiler makes a lot of differ-
ence to any Delphi developer who has to deal with this encoding.

You are also free to write overloaded version of existing routines (or new
ones) using this specific string type to avoid any extra conversion.

Converting Strings
We've seen you can assign a UnicodeString value to an AnsiString or a
UTF8String and the proper conversions will take place. Similarly, when you
assign an AnsiString with a given code page to another one based on a dif-
ferent code page a conversion happens. You can also convert a string by
assigning to it a different code page, asking for a conversion to take place:
type
 Latin1String = type AnsiString(28591);

procedure TFormStringConvert.btnLatin1Click(
 Sender: TObject);
var
 str1: AnsiString;

41 I'll cover the TEncoding class and text file conversions later in this chapter, in the
section “Streams and Encodings”.

Marco Cantù, Delphi 2009 Handbook

62 - Chapter 2: The Unicode String Type

 str2: Latin1String;
 rbs: RawByteString;
begin
 str1 := 'any string with a €';
 str2 := str1;

 Memo1.Lines.Add (str1);
 Memo1.Lines.Add (IntToStr (Ord (str1[19])));

 Memo1.Lines.Add (str2);
 Memo1.Lines.Add (IntToStr (Ord (str2[19])));
 rbs := str1;
 SetCodePage(rbs, 28591, True);
 Memo1.Lines.Add (rbs);
 Memo1.Lines.Add (IntToStr (Ord (rbs[19])));
end;

In both cases above, the conversion is a lossy conversion, because the Euro
symbol cannot be represented in the Latin-1 code page. Notice the use of the
SetCodePage routine, that can be applied only to a RawByteString para-
meter, hence the assignment. This is the output you'll get:
any string with a €
128
any string with a ?
63
any string with a ?
63

Conversions Slow Down the Code
The automatic conversions happening behind the scenes are extremely
handy, as the system does a lot of work for you, but if you don't carefully
consider what you are doing you might end up with some extremely slow
code, because of continuous conversions and string copy operations. Con-
sider the following code (part of the StringConvert example):
 str1 := 'Marco ';
 str2 := 'Cantù ';
 for I := 1 to 10000 do
 str1 := str1 + str2;

Depending on the actual string type of the two strings, the algorithm can be
extremely fast or excruciatingly slow. The demo uses string (that is Uni-
codeString) in a first run and a combination of AnsiString and UTF8String
(the worse possible case, as they'll have to be converted back and forth to the

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 63

UnicodeString type for each assignment) in a second. This is the result of
10,000 iterations:
plain: 00.001
mixed: 01.717

Yes, you are reading the right numbers, that's about 1,000 times or three
orders of magnitude! If this wasn't bad enough, consider what happens with
50,000 concatenations:
plain: 00:00.003
mixed: 00:42.879

That's another order of magnitude42! In other words, an occasional implicit
conversion is fine, but never ever let them happen within a loop or recursive
routine!

What is important to know, is that you can compile your program with
string conversion warnings enabled (which is actually the default), and see
where the compiler adds conversion code. On that single line of code used
for concatenating strings of different types you'll get the following warnings:
W1057 Implicit string cast from 'UTF8String' to 'string'
W1057 Implicit string cast from 'AnsiString' to 'string'
W1058 Implicit string cast with potential data loss from
'string' to 'UTF8String'

The “potential data loss” problem arises because not all strings can be
expressed in all formats. For example, if you assign a UnicodeString to an
AnsiString there are chances that the operation won't be possible. As string
conversion operations are quite common, the corresponding two warnings
(Implicit string cast and Implicit string cast with potential data loss) are
turned off by default.

With these warnings on you'll see many potential pitfalls, but an average
program can have many and even an explicit typecast won't remove them
but simply change them to a different set of warnings (Explicit string cast
and Explicit string cast with potential data loss). Turn these warnings off
when you are done checking!43

42 The increase is exponential due to the fact than larger and larger strings need to be
re-allocated in memory many times. What slows down the code is only partially the
conversion, but mostly the need to create new large temporary strings rather than
keep increasing the size of the current one.

Marco Cantù, Delphi 2009 Handbook

64 - Chapter 2: The Unicode String Type

A fifth similar warning is issued when assigning a string constant to a string,
in case some of the characters cannot be converted. The warning in this case
is slightly different:
[DCC Warning] StringConvertForm.pas(63): W2455 Narrowing
given wide string constant lost information

This is a warning you should get rid of, as the operation won't make a lot of
sense.

As another example of an implicit (and somewhat hidden) conversion slow-
ing down the program execution, consider the following code snippet:
 str1 := 'Marco Cantù';
 for I := 1 to MaxLoop2 do
 str1 := AnsiUpperCase (str1);

In cases where the str1 variable is a UnicodeString all is fine, but in cases
where it is an AnsiString, it will cause two conversions. This is not as bad as
in the previous case (because the string here is short and a copy of the string
is required anyway) but shows a little overhead (for one million iterations):
AnsiUpperCase (string): 00:00.289
AnsiUpperCase (AnsiString): 00:00.540

The Ensure Calls
Another set of “hidden” operations added by the compiler is the Ensure
String family of calls, added to check the code page of a string parameter,
eventually triggering a conversion if it doesn't match. The most relevant of
these calls is EnsureUnicodeString.

As it is very hard to achieve an incorrect situation in Delphi (short of a direct
cast to the wrong string type), you might wonder why these were added. The
reason is that when a UnicodeString is managed by C++Builder code, things
can go wrong.

To make things safe, the compiler adds these extra checks in many different
places, particularly when working on a string passed as parameter. While
this is the default behavior, you can compile specific code (and libraries)

43 These “diagnostic warnings”, like the pointer and type safety ones introduced to
check for .NET compatibility, can be kept off by default. Even though I'm a pro-
ponent of the rule “keep all warnings on and try to compile programs with no hints
and warnings” I agree that “diagnostic warnings” should be treated differently.

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 65

disabling this setting, using the --string-checks compiler options or the
$STRINGCHECKS directive. Given that you have to use them at your own risk,
these switches are not documented and not officially supported (although,
oddly enough, they are directly available in the project options). Still as
potential issues are very limited when using Delphi (and not C++Builder),
you can probably turn them off as a regular speedup technique.

For example, if you write the following one liner:
function DoubleLengthUpperOn(
 const S: UnicodeString): Integer;
begin
 Result := Length(AnsiUppercase(S));
end;

and compile this and an identical version with a different name, with the
string checks on and off, and later call them within a loop of 10 million itera-
tions, you'll see the following timing:
UpperOn: 00:02.202
UpperOff: 00:02.159

This seems very modest, and quite irrelevant. However, if you make the
actual code of the functions blazingly fast (for example by removing the
AnsiUpperCase call), the results for 10 times more iterations becomes:
On: 00:03.556
Off: 00:00.310

In this case the difference is significant (ten times as much) and seems lin-
ear with the number of iterations of the loop. Even if similar cases will be
marginal, this is probably a good reason to keep this setting turned off.

For more information on this setting and its effect in terms of generated
assembly code, you can refer to the following blog entry by Jan Goyvaerts:
http://www.micro-isv.asia/2008/10/needless-string-
 checks-with-ensureunicodestring

Watch Out for Literals in Concatenation
Speaking of string concatenation, you have to watch out for concatenations
involving string literals. For example consider the following apparently
trivial lines of code:
 Log ('String: ' + str1);
 Log (str1 + ' is a string');

Marco Cantù, Delphi 2009 Handbook

66 - Chapter 2: The Unicode String Type

Now if str1 is a UnicodeString, there should be no problem at all. If str1 is
an AnsiString, in one of its variations, the concatenation with a Unicode
string literal might force different conversions depending whether the string
literal comes before or after the string variable. In most mixed string cases
involving literals, my suggestion is to add an explicit type cast for the string,
like in:
 Log ('String: ' + UnicodeString(str1));
 Log (UnicodeString(str1) + ' is a string');

Using RawByteString
What if you need to pass an AnsiString as a parameter to a routine? When
the parameter is assigned to a specific string type with an encoding, it will
be converted to the proper type, with the potential for data loss. That's why
Delphi 2009 introduces yet another custom string type, called Raw-
ByteString and defined as:
type
 RawByteString = type AnsiString($ffff);

This is definition creates a string type with no encoding or, to be more pre-
cise, with the placeholder $ffff indicating “no encoding”. A RawByteString
can be considered as a string of bytes, which ignores the attached encoding
in case of an automatic conversion when assigning to an AnsiString. In other
words, when passing a 1-byte per character string as a RawByteString para-
meter, no conversion is performed, unlike any other AnsiString derived
type. You can do a specific conversion by calling the SetCodePage routine,
as demonstrated earlier in the section “Converting Strings”.

As such, it can become a handy replacement of the string (or AnsiString)
type in code that uses strings for generic and custom data processing which
you want to keep with a 1-byte per character representation44.

Declaring variables of type RawByteString for storing an actual string
should rarely be done45. Given the undefined code page, this can lead to

44 Don't be confused by this extended support for 1-byte per character Ansi-compatible
strings: the preferred solution is by far to migrate your string processing code to the
UnicodeString type. Don't be too tempted by these new extra string types.

45 For some interesting considerations on RawByteString see Jan Goyvaerts blog post at
http://www.micro-isv.asia/2008/08/using-rawbytestring-effectively/

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 67

undefined behavior and potential data loss. On the other hand if your goal is
saving binary data using a string-like memory allocation and representation,
you can use the RawByteString in the same way you used AnsiString in past
versions of Delphi. Replacing non-string code that used AnsiString with
RawByteString is an interesting migration path (as you'll see in the section
“Don't Move String Data” of Chapter 3).

For now, let's focus on a typical example in which you can use the Raw-
ByteString type as parameter. If you want to display some information about
an 8-bit string, you could write either of the following two declarations
(these are methods of the main form of the RawTest demo):
 procedure DisplayStringData (str: AnsiString);
 procedure DisplayRawData (str: RawByteString);

The code of the two methods is identical (here I've listed only one of the
two):
procedure TFormRawTest.DisplayRawData(
 str: RawByteString);
begin
 Log ('DisplayRawData(str: RawByteString)');
 Log ('String: ' + UnicodeString(str));
 Log ('CodePage: ' + IntToStr (StringCodePage (str)));
 Log ('Address: ' + IntToStr (Integer (Pointer (str))));
end;

Notice the cast to UnicodeString used to display the proper string, which is
necessary to avoid the data being treated like a plain AnsiString because of
the concatenation of a string literal with a string whose code page is not
defined at compile time46.

The reason I show the string memory address (beside its content and code
page) is that this will let us determine if the string has been converted (and
copied) or if it is the exact same string that was passed as a parameter.

Now we can use an AnsiString variable (not simply assigning a string con-
stant but doing some processing, or the result would be different) and pass
it as parameter to the two methods, after logging some string data:
procedure TFormRawTest.btnRawAnsiClick(Sender: TObject);
var
 strAnsi: AnsiString;
begin
 strAnsi := 'Some text ';

46 Using Log (str) directly would work, as there is no concatenation involved.

Marco Cantù, Delphi 2009 Handbook

68 - Chapter 2: The Unicode String Type

 strAnsi := strAnsi + AnsiChar (210) + AnsiChar (128);

 Log ('String: ' + strAnsi);
 Log ('CodePage: ' + IntToStr (
 StringCodePage (strAnsi)));
 Log ('Address: ' + IntToStr (
 Integer (Pointer (strAnsi))));

 DisplayStringData (strAnsi);
 DisplayRawData (strAnsi);
end;

The result will be as expected, since when calling the DisplayStringData
and the DisplayRawData methods no conversions will be performed and
all operations will take place in the exact same string:
String: Some text Ò€
CodePage: 1252
Address: 28149532

DisplayStringData(str: AnsiString)
String: Some text Ò€
CodePage: 1252
Address: 28149532

DisplayRawData(str: RawByteString)
String: Some text Ò€
CodePage: 1252
Address: 28149532

If this looks obvious, it might not be so clear what happens when we pass a
UTF8String as actual parameter to the methods. The calling code is quite
similar, although I convert each single character treating it as a UTF-8
value:
var
 strUtf8: UTF8String;
 nChar: Integer;
begin
 strUtf8 := 'Some text ';
 nChar := 210;
 strUtf8 := strUtf8 + UTF8String (AnsiChar (nChar));
 nChar := 128;
 strUtf8 := strUtf8 + UTF8String (AnsiChar (nChar));

 Log ('String: ' + strUtf8);
 Log ('CodePage: ' + IntToStr (
 StringCodePage (strUtf8)));
 Log ('Address: ' + IntToStr (
 Integer (Pointer (strUtf8))));

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 69

 DisplayStringData (strUtf8);
 DisplayRawData (strUtf8);
end;

This time passing the string as an AnsiString performs an actual conversion
(which is a lossy conversion, as the characters cannot be represented by a
AnsiChar), while the RawByteString operations process the original string
directly and produce the correct output:
UTF-8 string

ҀString: Some text
CodePage: 65001
Address: 28804892

DisplayStringData(str: AnsiString)
String: Some text ?
CodePage: 0
Address: 28804732

DisplayRawData(str: RawByteString)
ҀString: Some text

CodePage: 65001
Address: 28804892

In the program you can see more tests done with custom-defined string
types. Like with the UTF8String test, each time you pass a custom string as
an AnsiString a conversion takes place, which is potentially lossy, while
using the RawByteString parameter you can keep the string in its original
value and display it correctly. Here is a selection of the output lines:
Latin string

 String: Some text Ò

DisplayStringData(str: AnsiString)
String: Some text Ò?

DisplayRawData(str: RawByteString)
 String: Some text Ò

Cyrillic string
String: Some text ТФ

DisplayStringData(str: AnsiString)
String: Some text ??

DisplayRawData(str: RawByteString)
String: Some text ТФ

Marco Cantù, Delphi 2009 Handbook

70 - Chapter 2: The Unicode String Type

New UTF-8 Conversion Functions
Beside many automatic string transformations there are also several new
direct string conversion functions you can use. For example, there is a large
number of new conversions functions to and from UTF-8 encoding, over-
loaded for the different string types:
function UTF8Encode(...): RawByteString;
function UTF8EncodeToShortString(...): ShortString;
function UTF8ToWideString(...): WideString;
function UTF8ToUnicodeString(...): UnicodeString;
function UTF8ToString(...): string;

String and Character Literals
We have seen in several examples that you can assign an individual charac-
ter literal or a string literal to any of the string types, with the proper
conversion taking place behind the scenes.

String literals are invariable considered of the UnicodeString type. Notice
that this could cause issues with overloading resolution when passing a con-
stant string to a function like Pos, that now has multiple versions. In
general, though, the management of string literals is quite direct. As we saw
in the last chapter, you can add any Unicode character to a constant string in
the editor, and everything will work smoothly.

Character literals cause some more issues though, particularly for backward
compatibility reasons. Plain character literals are converted depending on
their context. It is more difficult for the compiler to determine what to do
with hexadecimal (or decimal) character literals, like in the following code
taken from the HighCharTest example:
var
 str1: string;
begin
 str1 := #$80;

For backward compatibility reasons, all 2-digit string literals are parsed as
AnsiChar by default, so that a developer like me living in Europe (or, more
technically, having the same code page setting as me) will see the Euro cur-
rency symbol is displayed in the string. Actually, by executing the statement:

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 71

 Log (str1 + ' - ' + IntToStr (Ord (str1[1])));

I'll get the output:
€ - 8364

In other word, the literal is treated like an AnsiChar and converted to the
proper Unicode code point. If you want to fully move to Unicode, though
you might not like this behavior, as you'll never know how a given literal is
going to be interpreted. That's why CodeGear introduced in Delphi 2009 a
new compiler directive:
{$HIGHCHARUNICODE <ON|OFF>}

This directive determines how literal values between #$80 and #$FF are
treated by the compiler. What I discussed earlier is the effect of the default
option (OFF). If you turn it on, the same program will produce this output:

 - 128

The number is interpreted as an actual Unicode code point and the output
will contain a non-printable control character. Another option to express
that specific code point (or any Unicode code point below #$FFFF) is to use
the four-digits notation:
 str1 := #$0080;

This is not interpreted as the Euro currency symbol regardless of the setting
of the $HIGHCHARUNICODE directive.

What is nice is that you can use the four digits notation to express far east-
ern characters, like the following two Japanese characters:
 str1 := #$3042#$3044;

displayed47 as (along with their Integer representation):

あい - 12354 – 12356

You can also use literal elements over #$FFFF that will be converted to the
proper surrogate pair.

Finally notice that for string literals, the code page is taken from the com-
piler options, which you can modify for a specific project, and not from the
system code page of the computer on which you are compiling or executing
the program.

47 あい translates to “meeting” according to BabelFish, but I'm not 100% sure where I
originally found it.

Marco Cantù, Delphi 2009 Handbook

72 - Chapter 2: The Unicode String Type

Streams and Encodings
If moving all your strings to Unicode within your application, when working
with the RTL and VCL, and while invoking the Windows API isn't that hard,
things can become a little more complicated as you read and write your
strings to and from files. What happens with the TStrings file operations
for example?

Delphi 2009 introduces another brand new class to handle file encodings,
called TEncoding and somewhat mimicking the System.Text.Encoding
class of the .NET framework. The TEncoding class, defined in the SysUtils
unit, has several subclasses representing the encodings automatically sup-
ported by Delphi (these are standard encodings to which you can add your
own):
type
 TEncoding = class
 TMBCSEncoding = class(TEncoding)
 TUTF7Encoding = class(TMBCSEncoding)
 TUTF8Encoding = class(TUTF7Encoding)
 TUnicodeEncoding = class(TEncoding)
 TBigEndianUnicodeEncoding = class(TUnicodeEncoding)

The TUnicodeEncoding class uses the same UTF-16 LE (Little Endian)
format used by the UnicodeString type. One object of each of these classes is
available within the TEncoding class, as class data, and has a corresponding
getter function and class property:
type
 TEncoding = class
 ...
 public
 class property ASCII: TEncoding read GetASCII;
 class property BigEndianUnicode: TEncoding
 read GetBigEndianUnicode;
 class property Default: TEncoding read GetDefault;
 class property Unicode: TEncoding read GetUnicode;
 class property UTF7: TEncoding read GetUTF7;
 class property UTF8: TEncoding read GetUTF8;

The TEncoding class has methods for reading and writing characters to
byte streams, to perform conversions, plus a special function to handle the
BOM called GetPreamble. So you can write (anywhere in the code):
TEncoding.UTF8.GetPreamble

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 73

Streaming Strings Lists
The ReadFromFile and WriteToFile methods of the TStrings class can
be called with an encoding. If you write a string list to text file without
providing a specific encoding, the class will use TEncoding.Default,
which uses the internal DefaultEncoding in turn extracted at the first
occurrence by the current Windows code page. In other words, if you save a
file you'll get the same ANSI file as before.

Of course, you can also easily force the file to a different format, for example
the UTF-16 format:
 Memo1.Lines.SaveToFile('test.txt', TEncoding.Unicode);

This saves the file with a Unicode BOM or preamble. As you do the corres-
ponding LoadFromFile operation, if you don't specify an encoding, the
loading method will end up calling the GetBufferEncoding method of the
TEncoding class that will determine the encoding depending on the pres-
ence of a BOM (of its absence, in which case it will use the default ANSI
encoding).

What if you specify an encoding in LoadFromFile? The encoding you
provide will be used for reading the file, regardless of the actual BOM in the
file, often producing an error. I'd rather expect an exception in case of such
a discrepancy, saving a file with one code page and forcing to upload it with
a different one is certainly a developer error. Not having an exception can
help in case the encoded file was saved without a BOM, and still should not
be considered as an ASCII file, but a UTF one.

But let us focus on the file saving operation. If you don't change the existing
Delphi code, your programs will save files as ANSI. If your existing pro-
grams don't handle Unicode data, your program and its files will be fully
backwards compatible.

But what if a program does handle Unicode data? Let's suppose we have a
string list with lines written in different languages48, like in the following
design-time form of the StreamEncoding project:

48 These lines have been extracted from the “What is Unicode?” page of the Unicode
Consortium web site, which has its text translated in many different languages using
a variety of alphabets.

Marco Cantù, Delphi 2009 Handbook

74 - Chapter 2: The Unicode String Type

If we have existing Delphi code that saves the string list to a file and reloads
it, it would probably look like:
procedure TFormStreamEncoding.btnPlainClick(
 Sender: TObject);
var
 strFileName: string;
begin
 strFileName := 'PlainText.txt';
 ListBox1.Items.SaveToFile(strFileName);
 ListBox1.Clear;
 ListBox1.Items.LoadFromFile(strFileName);
end;

Needless to say that the effect would be a total disaster, as only a fraction of
the characters used have an ANSI representation, so you'll end with lots of
question marks in the list box.

A simple alternative would be to change the code as in the event handler of
the second button of the project:
 strFileName := 'Utf8Text.txt';
 ListBox1.Items.SaveToFile(strFileName, TEncoding.UTF8);

Again, we don't have to specify an encoding when loading the string list, as
Delphi will pick it up from the BOM.

If you prefer to save the data as ANSI unless necessary, you could check for
the string list content to determine whether to save as ASCII or UTF-8:

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 75

procedure TFormStreamEncoding.btnAsNeededClick(
 Sender: TObject);
var
 strFileName: string;
 encoding1: TEncoding;
begin
 strFileName := 'AsNeededText.txt';
 encoding1 := TEncoding.Default;

 if ListBox1.Items.Text <>
 UnicodeString (AnsiString(ListBox1.Items.Text)) then
 encoding1 := TEncoding.UTF8;

 ListBox1.Items.SaveToFile(strFileName, Encoding1);

This code checks whether you can convert a string to an AnsiString and back
to a UnicodeString without losing any content. For a very long string, this
double conversion plus comparison would be quite expensive, so you could
use the following alternative code instead (which is not as precise, as it relies
on a specific code page49, but comes close):
var
 ch: Char;
begin
 ...
 for ch in ListBox1.Items.Text do
 if Ord (ch) >= 256 then
 begin
 encoding1 := TEncoding.UTF8;
 break;
 end;

Using similar code you could decide which format to use, depending on the
situation. It might be a better idea, though, to move all of your files to Uni-
code encoding (UTF-8 or UTF-16), regardless of the actual data. Using UTF-
16 will make the files bigger, but will also reduce the conversions when sav-
ing and loading.

However, since there is no way to specify a default conversion, going for
Unicode encoding of your files would mean the need to change each and
every file save operation... unless we use a trick, changing the standard

49 Checking if ch >= 256 does not work if the default code page is something other
than Windows 1252. For example “Cantù” does not have any characters >= 256, but
it cannot be represented in code page 1251.

Marco Cantù, Delphi 2009 Handbook

76 - Chapter 2: The Unicode String Type

behavior of the class. Such a hack could comes in the form of a class
helper50. Consider the following code:
type
 TStringsHelper = class helper for TStrings
 procedure SaveToFile (const strFileName: string);
 end;

procedure TStringsHelper.SaveToFile(
 const strFileName: string);
begin
 inherited SaveToFile (strFileName, TEncoding.UTF8);
end;

Notice that inherited here doesn't mean to call a base class but the class
helped by the class helper. Now you simply write (or keep your code as):
 ListBox1.Items.SaveToFile(strFileName);

to save it as UTF-8 (or any other encoding of your choice). You'll find this
code in the StreamEncoding example.

Defining a Custom Encoding
Even if Delphi 2009 comes with a few predefined encodings, you might end
up needing more. An example of a not-so-common encoding you might
need is UTF-32 (little-endian). Defining and using a custom encoding is cer-
tainly possible, although there are a few rough edges.

First of all, you have to define a class that inherits from either TEncoding or
one of its descendants. Since there are no existing encoding classes handling
4-bytes characters, I've gone for inheriting from the base class:
type
 TUTF32Encoding = class (TEncoding)
 class var
 UTF32Encoding: TUTF32Encoding;
 strict protected
 function GetByteCount(Chars: PChar;
 CharCount: Integer): Integer; override;
 function GetBytes(Chars: PChar;

50 If you are interested to learn about class helpers, a good source is my “Delphi 2007
Handbook”, but you can certainly find other references searching the web. The
concept of class helper is a little known but extremely powerful feature of recent ver-
sions of Delphi.

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 77

 CharCount: Integer; Bytes: PByte;
 ByteCount: Integer): Integer; override;
 function GetCharCount(Bytes: PByte;
 ByteCount: Integer): Integer; override;
 function GetChars(Bytes: PByte;
 ByteCount: Integer; Chars: PChar;
 CharCount: Integer): Integer; override;
 public
 function GetPreamble: TBytes; override;
 class function Encoding: TEncoding;
 function GetMaxByteCount(
 CharCount: Integer): Integer; override;
 function GetMaxCharCount(
 ByteCount: Integer): Integer; override;
 end;

There are basically two core conversion methods (GetBytes and
GetChars), four characters/bytes counting methods, a method to define the
BOM or preamble, and a class function used to return a singleton instance,
saved in the class variable. Only the two conversion methods are complex,
while for everything else all you have to keep in mind is you take 4 bytes,
that is SizeOf(UCS4Char), for each character. Here are the methods except
the conversion ones, which are covered later in more detail:
class function TUTF32Encoding.Encoding: TEncoding;
begin
 if not Assigned (UTF32Encoding) then
 UTF32Encoding := TUTF32Encoding.Create;
 Result := UTF32Encoding;
end;

function TUTF32Encoding.GetByteCount(
 Chars: PChar; CharCount: Integer): Integer;
begin
 Result := CharCount * SizeOf(UCS4Char);
end;

function TUTF32Encoding.GetCharCount(
 Bytes: PByte; ByteCount: Integer): Integer;
begin
 Result := ByteCount div SizeOf(UCS4Char);
end;

function TUTF32Encoding.GetMaxByteCount(
 CharCount: Integer): Integer;
begin
 Result := (CharCount + 1) * 4;
end;

Marco Cantù, Delphi 2009 Handbook

78 - Chapter 2: The Unicode String Type

function TUTF32Encoding.GetMaxCharCount(
 ByteCount: Integer): Integer;
begin
 Result := (ByteCount div 4) + (ByteCount and 1) + 1;
end;

function TUTF32Encoding.GetPreamble: TBytes;
begin
 // UTF-32, little-endian
 SetLength(Result, 4);
 Result[0] := $FF;
 Result[1] := $FE;
 Result[2] := $00;
 Result[3] := $00;
end;

The code mimics somewhat the Delphi RTL classes, resembling in particular
the TUnicodeEncoding class. The conversion methods are slightly more
complicated. Since I don't want to handle the characters directly, I'm using
the UnicodeString to UCS4String conversion functions provided by the
Delphi RTL. Extracting the physical bytes to store in the stream is a matter
of converting to UCS4String and moving the data at a low level:
function TUTF32Encoding.GetBytes(Chars: PChar;
 CharCount: Integer; Bytes: PByte;
 ByteCount: Integer): Integer;
var
 u4String: UCS4String;
begin
 Result := CharCount * SizeOf(UCS4Char);
 u4String := UnicodeStringToUCS4String (
 UnicodeString (Chars));
 Move(u4String[0], Bytes^, Result);
end;

For the opposite conversion you need to move the binary data to the
UCS4String type, convert it, and copy the result in the output buffer:
function TUTF32Encoding.GetChars(Bytes: PByte;
 ByteCount: Integer; Chars: PChar;
 CharCount: Integer): Integer;
var
 u4String: UCS4String;
 uString: UnicodeString;
begin
 Result := CharCount;
 SetLength (u4String, Result);
 Move(Bytes^, u4String[0],
 CharCount * SizeOf(UCS4Char));
 uString := UCS4StringToUnicodeString (u4String);

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 79

 Move(uString[1], Chars^,
 CharCount * SizeOf(Char));
end;

Now with this custom encoding available you can simply write code like in
the CustomEncoding demo:
procedure TFormCustomEncoding.btnTestEncoding2Click(
 Sender: TObject);
begin
 Memo1.Lines.LoadFromFile ('Utf8Text.txt');
 Memo1.Lines.SaveToFile ('Utf32.txt',
 TUTF32Encoding.Encoding);
 Memo1.Lines.LoadFromFile ('Utf32.txt',
 TUTF32Encoding.Encoding);
end;

The only potential problem is that we cannot simply call the LoadFromFile
method with no encoding and ask the Delphi RTL to recognize it, as this
simply won't work51. In Delphi 2009 there is no way to install our custom
encoding in the RTL to make its preamble know to the BOM-detection code
inside the TEncoding.GetBufferEncoding class function. This is demon-
strated by the last button of the example.

Unicode and the VCL
Having Unicode string support in the Delphi language is thrilling, having
the Win32 APIs remapped to the Wide version opens up a lot of easy migra-
tion, but the fundamental change is that the entire RTL and the Visual
Component Library (VCL) are now fully Unicode enabled. All of the string
(and string lists) managed by components are declared as string, so they
now match the new UnicodeString type.

Some of the low-level, internal areas of the RTL, though, rely on different
formats. For example property names are based on UTF-8, and so is part of
the RTTI support available in the TypInfo unit. Beside some very specific
exceptions, everything else has been migrated to UnicodeString and UTF-
16.

51 Also note that very few editors out there recognize the UTF-32 BOM and encoding.

Marco Cantù, Delphi 2009 Handbook

80 - Chapter 2: The Unicode String Type

The Unicode support is a key element, but not the only feature that helps
improving the support for building international applications. Other fea-
tures relate to the use of BiDiMode and Translation support.

Regarding source code files keep in mind you can save them in any format
you like, but it is necessary to use a Unicode format if you are using any code
point above 255 in your source code (for identifier names, strings, com-
ments, or just about anything else). The editor will prompt you to use such a
format when required, but you can go for Unicode source code files anyway.

A Growing Core RTL?
With all of the extra string processing and management runtime level code,
are Delphi 2009 executable files bigger than in the past? I've compared the
size of a minimal VCL application compiled with runtime packages
(MiniPack) and that of a bare-bones Windows API program52 (MiniSize),
compiled in both Delphi 2007 and Delphi 2009, obtaining the following res-
ults:

Delphi 2007 Delphi 2009

MiniPack 15,872 16,896

MiniSize 19,456 20,992

The “extra weight” is about 1 KB, an amount that increases if you do string
conversions, but should remain quite minimal compared to the size of any
real world application.

Unicode in DFM Files
I'm just mentioned how the Delphi IDE can treat Unicode-enabled source
code files, but we have not seen what happens to DFM files as you add an
extended character to one of the properties. A simple experiment would be

52 These two programs were part of my Mastering Delphi 2005 and I've not copied the
code to the source code base of the current book, as they are rather simple. They can
be downloaded from the source code of that book, though, at http://www.mar-
cocantu.com/md2005.

Marco Cantù, Delphi 2009 Handbook

Chapter 2: The Unicode String Type - 81

to open a brand new program, place a button on it, and paste in the button
caption a Unicode character, like the Japanese characters of the “String Lit-
erals” section.

Viewing the Form as Text or looking at the actual DFM file you'll see the fol-
lowing:
 object Button1: TButton
 Left = 176
 Top = 104
 Width = 75
 Height = 25
 Caption = #12354#12356
 TabOrder = 0
 end

Now add another form to the program (as I did in the DfmTest program, or
modify the same), and this time change the Name of the button adding Uni-
code characters, like:

What is the effect on the DFM in this case? It will be saved in a UTF-8
format (along with the PAS file). Open it as text and you'll see an odd differ-
ence between the component Name and its Caption, which are matching but
use different representations:

 object Buttonあい: TButton
 Left = 224
 Top = 112
 Width = 75
 Height = 25
 Caption = 'Button'#12354#12356
 TabOrder = 0
 end

In this case the DFM file is not backward compatible with Delphi 2007.

Localizing the VCL
With the support for Unicode, Delphi's traditional support for “bi-direc-
tional mode”, or BiDiMode, controls mirroring in a form, and the
Translation Manager, which is part of the IDE, become even more relevant.

Marco Cantù, Delphi 2009 Handbook

82 - Chapter 2: The Unicode String Type

I won't cover BiDiMode in detail, nor provide guidance for the Internal and
External Translation Managers, as these tools didn't really change compared
to past versions of Delphi. The translation architecture of the VCL these
tools are based upon has been in Delphi for many versions, but the tools
have certainly been improved (and some of their bugs fixed) because they
are now under the spotlight.

What's Next
Now that you have seen how Delphi 2009 treats Unicode strings, we can
focus on transitioning existing Object Pascal source code from the ASCII
world to the Unicode world. There are many related issues involved, like
PChar-based pointer math, a good reason to split off that material in a sep-
arate chapter.

Coverage of new string-related features doesn't end here, as in Chapter 7 I'll
cover other new RTL features like the TStringBuilder class and other
enhanced classes for streaming text.

Marco Cantù, Delphi 2009 Handbook

Chapter 3: Porting to Unicode - 83

Chapter 3:
Porting To

Unicode

Having native Unicode support in Delphi is a big step forward, and the fact
you can continue to use the String type means you can port existing code
simply at the cost of recompiling. This change is a big change. From calls to
the Windows API to the use of PChar pointer only for the pointer math sup-
port, there are many areas of Delphi for which you can expect the migration
not to be so easy and straightforward. This chapter delves into those and
other possible problems.

Before we dive into the chapter, be aware that if you need to keep compiling
your code in past versions of Delphi you can take advantage of the UNI-
CODE compiler directive, which is defined by the Delphi 2009 compiler. So

Marco Cantù, Delphi 2009 Handbook

84 - Chapter 3: Porting to Unicode

you can write code snippets that won't compile in previous versions of
Delphi by writing:
{$IFDEF UNICODE}
 // Delphi 2009 specific code
{$ENDIF}

Char Operations That Fail
As I just mentioned, most of the string and character based operations
recompile and migrate smoothly. However, there are some that don't and
will require a fix in the code.

A large amount of Pascal, Turbo Pascal, Object Pascal, and Delphi's Object
Pascal code assumes that the size of a character is a byte. All of this code can
potentially fail when moving to Delphi 2009. As we'll see in the section
about FillChar below, to get the actual size in bytes of a string you should
always multiply the string length by the StringElementSize value, as a
character often requires two bytes (but not always).

Watch Out for Set of Char
I've already mentioned that you cannot declare a set of Char any more, at
least not with the meaning this had in past versions of Delphi, that is having
a set including all of the possible characters. As covered in the previous
chapter, the compiler will assume you are porting existing code to Delphi
2009 and decide to consider your set of Char declaration as though it
was a set of AnsiChar, issuing a warning. Some of your existing code
dealing with this construct will fail though.

You can see an example of this warning (and the explicit cast used to remove
it) in the CharTest example of Chapter 2. The real issue in this case is that
there is no way to define a set of all characters any more, or to express the
inclusion of a character in a set with this way of coding. You really have to
change the code completely! Consider for example the simple code of the
CharTest demo I've just mentioned:
var
 charSet: set of Char;

Marco Cantù, Delphi 2009 Handbook

Chapter 3: Porting to Unicode - 85

begin
 charSet := ['a', 'b', 'c'];
 if 'a' in charSet then ...

The alternative approach is to avoid the set of characters altogether and use
a different algorithm, like:
var
 charSet: string;
begin
 charSet := 'abc';
 if Pos ('a', charSet) > 0 then ...

This has the advantage that is works also when the characters are not ASCII,
while using sets limits you to 256 values in the comparison. Similarly, rather
than testing for the inclusion of a character in a range like:
if ch1 in ['0'..'9'] then ...

which compiles and works only thanks to the reduction of the ch1 variable to
a byte char (as hinted by the related warning), you should rather code it like
you'll do in most other programming languages like:
if (ch1 >= '0') and (ch1 <= '9') then ...

All of these techniques have the advantage of being backward compatible. If
you need to replace your is character in set test specifically for Delphi 2009,
I'd certainly recommend using the new specific CharInSet function of the
SysUtils unit:
 if CharInSet ('a', charSet) then ...
 if CharInSet ('a', ['a', 'b', 'c']) then ...

This code is almost identical to the original test, and it is very easy to replace
the older tests with the new ones when porting code to Delphi 2009. The
CharInSet function is defined for both AnsiChar and WideChar values, and
uses as second parameter the set type defined below:
type
 TSysCharSet = set of AnsiChar;

function CharInSet(C: AnsiChar;
 const CharSet: TSysCharSet): Boolean; overload; inline;
function CharInSet(C: WideChar;
 const CharSet: TSysCharSet): Boolean; overload; inline;

Another alternative approach that is quite efficient and works across ver-
sions, is to replace these tests with a case statement like:
case Ch of
 'a'..'c': ...

Marco Cantù, Delphi 2009 Handbook

86 - Chapter 3: Porting to Unicode

end;

This also the advantage of being much faster than the CharInSet function.
A final specific case is the test for inclusion in the LeadBytes set:
if str[i] in LeadBytes then ...

In this case you should use the new IsLeadChar function to replace the test.
In some other cases the new Unicode-related tests provided by the Charac-
ter unit could help as well.

Avoid FillChar for Characters
Although the FillChar procedure was originally intended to be used for
filling a string with the same character many times, it is also (even more
commonly) used to fill a generic buffer with data. The most frequent use is
probably zeroing a data structure, making it impossible to change the actual
definition of the procedure (despite its name):
var
 rc: TRect;
begin
 FillChar (rc, SizeOf (rc), 0);

With strings changing to a character size of two bytes problems arise. The
first is because the string is now twice as big, while the second parameter of
FillChar is expressed in bytes, and not in number of logical characters. So
the first of the two FillChar operations in this code snippet (from the
CharTroubles example) fails, with the subsequent display operation showing
a t:
var
 str1, str2: string;
begin
 str1 := 'here comes a string';
 str2 := 'here comes a string';

 FillChar (str1[1], Length (str1), 0); // nope!
 Memo1.Lines.Add ('15 char is: ' + str1[15]);

 FillChar (str2[1],
 Length (str2) * StringElementSize (str2), 0); // yes!
 Memo1.Lines.Add ('15 char is: ' + str2[15]);

Marco Cantù, Delphi 2009 Handbook

Chapter 3: Porting to Unicode - 87

What's even worse, though is that filling the string with zeros will do, but
filling it with a specific character will cause a complete mess. In fact, if you
fill the string with the letter A, for example:
 FillChar (str2[1],
 Length (str2) * StringElementSize (str2), 'A');
 Memo1.Lines.Add ('15 char is: ' + str2[15]);

what you end up doing is not filling the string with the character $41 but
with $4141, so the string will become a sequence of Chinese characters:

15 char is: 䅁

In other words, you should absolutely stop using FillChar for filling a
string with copies of the same character and keep using the procedure only
for data structures. For filling a string you can use StringOfChar instead:
 str2 := StringOfChar ('A', 15);
 Memo1.Lines.Add (str2);

If you need an AnsiString result, notice there is an overloaded version of
StringOfChar, taking an AnsiChar character. Consider, though, that if you
write:
var
 S: AnsiString;
begin
 S := StringOfChar('A', 15);

the compiler will use the WideChar version of StringOfChar and will con-
vert the resulting UnicodeString to an AnsiString. To avoid the conversion
you can write:
S := StringOfChar(AnsiChar('A'), 15)

The simple reason is that the compiler cannot call an overloaded function
based on the result type, but only based on input parameters.

String Operations That Fail or
Slow Down

When working with strings, and particularly when moving existing string
processing code to Delphi 2009, there are two different issues for which you
have to watch out. First, you have to check if all operations produce the

Marco Cantù, Delphi 2009 Handbook

88 - Chapter 3: Porting to Unicode

same result, which at times is not the case. Second, you have to be sure that
some operations don't become terribly slow.

The terrible slow down generally happens because of implicit string conver-
sions, and in particular when you want to keep AnsiString variables around.
If the original AnsiString declaration was in your code to differentiate from
the ShortString type, then moving your code to use the generic string type
might be your best option.

Turn on All String Conversion Warnings
If you need to keep different string types around or are porting existing code
in general, you should at least for some time turn on all of the implicit string
conversion warnings, to have a better understanding of how the compiler
interprets your code and of the extra (possibly unneeded) operations it will
inject in your code. As we saw in the section “Assigning and Converting
Strings” of Chapter 2, this can slow down some code by the order of a thou-
sand times.

Remember there are now several string conversion warnings, some of which
are not enabled by default. This is a complete list of string/character related
warnings worth turning on at least for the conversion phase:

● Explicit string cast

● Explicit string cast with potential data loss

● Implicit string cast

● Implicit string cast with potential data loss

● Narrowing given wide/Unicode string constant lost information

● Narrowing given WideChar constant to AnsiChar lost information

● WideChar reduced to byte char in set expression

● Widening given AnsiChar constant to WideChar lost information

● Widening given AnsiString constant lost information

Marco Cantù, Delphi 2009 Handbook

Chapter 3: Porting to Unicode - 89

Remember that you can also turn specific string conversion warnings into
errors, at least temporarily, so it will be easier to catch them in case your
code is causing too many warnings and hints53:

Don't Move String Data
Accessing string data at a low level, for example with a Move call, was not a
very good idea in the past, as it could defeat reference counting and cause
memory overruns and other problems. Calling Move for characters is even
worse now that we have multiple string representations that are incompat-
ible at the binary level.

As an example, consider the following code (from the MoveStrings demo)
that moves data from a string to a buffer and then back to another string:
procedure TFormMoveStrings.btnMoveFailureClick(
 Sender: TObject);

53 More information about the new Project Options dialog box and various settings in
Chapter 4, in the section “Project Options Dialog Redesigned”.

Marco Cantù, Delphi 2009 Handbook

90 - Chapter 3: Porting to Unicode

var
 str1, str2: string;
 buffer: TBytes;
begin
 str1 := 'Hello world';

 SetLength (buffer, Length (str1));
 Move (str1[1], buffer[1], Length (str1));

 SetLength (str2, Length (buffer));
 Move (buffer[1], str2[1], Length (buffer));

 Log (str1 + ' becomes ' + str2);
end;

As Length returns the number of two-byte characters and Move works in
bytes, only the first half of the string the string is copied to the buffer and
then to the second string with the trailing part of the target string full of
whatever data was in its uninitialized memory:

Hello world becomes Hello圠 潤湩 we

If you have existing code that uses strings as buffers (like in the example
above) and don't want to touch your code, a solution might be to change the
string type definition to RawByteString (or, to a lesser extent, AnsiString).
The same MoveStrings demo has the same algorithm with the strings
declared as:
var
 str1, str2: RawByteString;

This version of the code produces the proper output, as it will be by using
AnsiString. Depending on the circumstances (the actual meaning of the data
being moved, string or buffer with data), you might prefer one of these types
over the other.

Even better, whenever possible, change your code to use a dynamic array of
bytes like TBytes, the data structure I've used in the code snippet of this
section to hold a generic buffer. The TBytes type is defined in the SysUtils
unit as a dynamic array of bytes:
type
 TBytes = array of Byte;

Marco Cantù, Delphi 2009 Handbook

Chapter 3: Porting to Unicode - 91

Reading and Writing Buffers
When you use pure string operations, your existing code will often port to
Delphi 2009 with no major obstacle. When you are saving your string data
to files or in-memory buffers, it is much easier to see things go wrong54.

The following is an example of a misused memory stream, in which data is
inserted and extracted using different encodings, which doesn't force a con-
version, but makes the system consider the characters of a different type
than they actually are and mix them up:
var
 memStr: TMemoryStream;
begin
 memStr := TMemoryStream.Create;
 try
 Memo1.Lines.
 LoadFromFile ('StreamTroubles_MainForm.pas');
 Memo1.Lines.SaveToStream(memStr, TEncoding.UTF8);
 memStr.Position := 0; // reset
 Memo2.Lines.LoadFromStream(memStr, TEncoding.Unicode);
 finally
 memStr.Free;
 end;

Executing this code results in a totally garbled content for Memo2. Now if in
this specific code snippet the error is quite glaring, in most real-world situ-
ations you can bump into the same effect in much more subtle ways.

The number one recommendation, whenever saving to a file, is to save the
BOM, to make it clear in which format it is55. This is no more difficult to
achieve when working in memory, because even if you don't remember the
actual format, Delphi's streaming code adds the proper BOM even to a
memory stream.

54 I wish a mismatch of the BOM in the file with the preamble of the requested encoding
used for loading would raise an exception, as this would make a little more sense. Of
course, you could always read the corresponding bytes, rather than using strings, in
case of low-level operations you want to fully control.

55 In the previous chapter, in the section “Streams and Encodings”we saw how to define
a class helper for the TStrings class to change the default encoding for streaming.
Refer to that example as a way to customize the behavior of your existing code
without having to update it in many places.

Marco Cantù, Delphi 2009 Handbook

92 - Chapter 3: Porting to Unicode

So you could fix the program above by calling the LoadFromStream method
with no encoding, letting the system check the format declared in the stream
itself:
var
 memStr: TMemoryStream;
begin
 memStr := TMemoryStream.Create;
 try
 Memo1.Lines.
 LoadFromFile ('StreamTroubles_MainForm.pas');
 Memo1.Lines.SaveToStream(memStr, TEncoding.UTF8);
 memStr.Position := 0; // reset
 Memo2.Lines.LoadFromStream(memStr);
 finally
 memStr.Free;
 end;

Appending and Concatenating Strings
Another type of coding you should replace whenever possible is the string
concatenation code. It is not too hard to look for occurrences of AppendStr
in your code (also because using it causes a deprecated warning), but it is
way more complicated to replace the direct string concatenation performed
with the + sign.

Also, the suggestion is to replace direct string concatenation with the use of
the TStringBuilder class in case you are performing a complex concatena-
tion56. For showing a message made of two strings, keeping the + sign is
certainly fine.

Again, what you should really look out for is concatenation that causes
implicit string conversions, as this means copying the data around many,
many times. In other words, appending and concatenating strings works
fine when all the string variables (left-value and right-values) are of the
same type (all UnicodeString, all AnsiString, all UTF8String, etc.). In that
case, the compiler uses the correct code page for string literals.

56 Differently from what has been written, using the TStringBuilder class doesn't
specifically improve performance, but makes the code more clear (in case of complex
conversions and concatenations) and, if you need that, compatible with the .NET
counterpart. The TStringBuilder class is covered in detail in Chapter 7.

Marco Cantù, Delphi 2009 Handbook

Chapter 3: Porting to Unicode - 93

When mixing strings using different code pages, explicit casts should be
used to avoid hidden conversion that slow down the code (or cause data
loss).

Strings are... Strings (not Bookmarks)
Although you have the new RawByteString type available to represent gen-
eric arrays of characters or bytes, my recommendation is to use string types
only for processing strings of characters. You might think this is obvious,
but it is not.

As an example, the VCL has long used a string type to represent dataset
bookmarks. The Bookmark property of the TDataSet class in Delphi 2007
was of type TBookmarkStr, defined as:
type
 TBookmarkStr = string;

The string was not really there, it was simply an alias of a pointer, but with
an odd definition that made available a reference-counting mechanism for
bookmarks for free.

This definition has now been changed in Delphi 2009, potentially causing
some incompatibilities, as the Bookmark property of the TDataSet class is
now of type TBookmark, defined as:
type
 TBookmark = TBytes;

The older TBookmarkStr type is still defined as an alias but has been
deprecated (even if not technically marked with the deprecated directive),
so you'll have to change your code to use the TBookmark type rather than
the TBookmarkStr type. I'll cover the problems related to moving code that
uses bookmarks to Delphi 2009 in Chapter 12. My main point here is, if you
ever did anything like this, rewrite your code: there is no better way.

Actual Troublesome “Porting” Cases
While recompiling hundreds of applications from my past books, I bumped
into a few specific cases in which porting to Unicode would require some
actual fixes and not a simple recompile. Some of these cases are really trivial
errors, and you'll easily spot them by looking to the source code, but I think

Marco Cantù, Delphi 2009 Handbook

94 - Chapter 3: Porting to Unicode

it is important to list them here, as your own code might use similar tech-
niques. I could have built endless examples “on purpose”, but I decided to
go for real cases, even if possibly less significant.

InliningTest used AnsiString
The following code snippet comes from Mastering Delphi 2005 and was
later updated for the Delphi 2007 Handbook57. It demonstrates the extra
speed gained by inlining the Length function, by providing a similar non-
inlined version, written as follows:
const
 LoopCount = 100000000;

var
 ssample : string;

function LengthStdcall (const s: AnsiString): Longint;
begin
 Result := Integer(S);
 if Result <> 0 then
 Result := PInteger(Result-4)^;
end;

procedure TForm3.bntLenghtClick(Sender: TObject);
var
 ttt: TTimeTest;
 I, J: Integer;
begin
 ssample:= 'sample string';
 J := 0;
 ttt := TTimeTest.Create;
 try
 for I := 0 to LoopCount do
 Inc (J, LengthStdcall (ssample));
 memo1.Lines.Add ('Length ' +
 ttt.Elapsed + '[' + IntToStr (J) + ']');
 finally
 FreeAndNil (ttt);
 end;
end;

The code still works, but the timing you get is certainly suspicious:

57 The complete source code is available in the dh2007_InliningTest project folder.

Marco Cantù, Delphi 2009 Handbook

Chapter 3: Porting to Unicode - 95

Length 15,188[1300000013]
Inline 203[1300000013]

The massive extra 15 seconds are required to convert the rather short Uni-
codeString into an AnsiString one hundred million times. All you have to do
to fix this code and get back the expected result is to change the declaration
of the LengthStdcall function to:
function LengthStdcall (const s: string): Longint;

This takes back the timing to (approximately):
Length 408[1300000013]
Inline 204[1300000013]

Calling Ansi-prefixed Functions
In StrUtils and SysUtils there used to be many functions and procedures
with Ansi in their name. What happens to them in the Unicode Delphi? Do
you need to remove those, keep them, or what?

There isn't a single answer, but in general you can keep them as they are
implemented for the generic string type but it would be even better to move
to using the identical routines named without the Ansi prefix.

In some cases, the upgrade is somewhat automatic. Most of the Ansi string
functions of the RTL (with or without an Ansi prefix) have been moved to
the new AnsiStrings unit and that most of them have an overloaded version
based on the UnicodeString type. If you don't include that unit you'll end up
binding to the UnicodeString version automatically58.

In fact there are two different situations:

● Some of the Ansi functions now internally work only on the Uni-
codeString type. When calling them with an AnsiString parameter,
they'll convert the string.

● Some of the Ansi function have AnsiString and UnicodeString over-
loads. Depending on the string you pass as parameter, you'll call one
version or the other.

58 If you want to keep using the AnsiString type, and don't want to add the AnsiStrings
unit in too many locations, consider using the unit alias directive, for example rede-
fining SysUtils as SysUtils plus AnsiStrings. On a command line that would be:
-ASysUtils=SysUtils;AnsiString

Marco Cantù, Delphi 2009 Handbook

96 - Chapter 3: Porting to Unicode

One function in the first group is AnsiResemblesText. You can replace a
call to AnsiResemblesText with one to ResemblesText, as they both work
on the UnicodeString type now:
function ResemblesText(const AText, AOther: string):
 Boolean; overload;
function AnsiResemblesText(const AText, AOther: string):
 Boolean; overload;

Of course if you code needs to use an actual AnsiString, even calling the Ansi
version of this function won't save you from the extra implicit string conver-
sions. The overload directive in this case is not effectively used, but let's you
add a AnsiString version of the functions in your own units.

One function in the second group is ReverseString. In this case the Ansi
version of the function takes an AnsiString parameter:
function ReverseString(const AText: string):
 string; overload;
function AnsiReverseString(const AText: AnsiString):
 AnsiString;

In this situation you might have the opposite problem, that is if you keep the
Ansi call and use the UnicodeString type the compiler will inject extra use-
less and possibly lossy conversions. In such a situation you have to update
your code to use the non-Ansi version of the function. In the opposite situ-
ation (that is if you use ReverseString passing an AnsiString), you can
also add a uses statement to refer to the AnsiStrings unit and make this
third version of the function available:
function ReverseString(const AText: AnsiString):
 AnsiString; overload;

To make things even more complicated, there are functions that have a
Wide version (again for compatibility with the WideStrUtils unit) and some
functions that have only an Ansi version.

In a good number of cases, though, the core units (SysUtils and StrUtils)
have only UnicodeString versions with the AnsiString versions now moved
to the AnsiStrings unit. A good example might be that of UpperCase59 and
related functions:
// in SysUtils
function UpperCase(const S: string): string; overload;
function UpperCase(const S: string;

59 Though functions such as UpperCase now take a UnicodeString parameter, they still
operate on ASCII characters only.

Marco Cantù, Delphi 2009 Handbook

Chapter 3: Porting to Unicode - 97

 LocaleOptions: TLocaleOptions): string;
 overload inline;
function AnsiUpperCase(const S: string):
 string; overload;
function WideUpperCase(const S: WideString): WideString;

// in AnsiStrings
function UpperCase(const S: AnsiString):
 AnsiString; overload;
function UpperCase(const S: AnsiString;
 LocaleOptions: TLocaleOptions): AnsiString;
 overload; inline;
function AnsiUpperCase(const S: AnsiString):
 AnsiString; overload;

// in WideStrUtils
function UTF8UpperCase(const S: UTF8string): UTF8string;

Overall three rules apply, from what I can see:

● CodeGear tried to minimize your code changes, so that you might
keep at least some Ansi calls as they are without harm.

● You should try to get rid of all Ansi calls (and Wide calls) in your
program, at the cost of taking some extra time for the migration.

● In case you want to keep using the AnsiString type (which is not
recommended), use the new AnsiStrings unit.

Unicode Strings and Win32
As already mentioned in the previous chapter, the Win32 API has in most
cases separate calls for ANSI strings (marked with A) or Unicode strings
(marked with W for Wide). To be more precise, these APIs use either a
PAnsiChar or a PWideChar. I've already stated that the fact that the Win32
API is so heavily based on UTF-16 makes this format the most obvious
choice for a native Windows development tools like Delphi.

In many cases, the ANSI versions of the Windows APIs call the Wide ver-
sions performing an extra conversion. In other cases the Wide APIs are
indeed slower. Having changed at the same time as the string format, the
PChar type alias, and the version of the Windows API mapped means you

Marco Cantù, Delphi 2009 Handbook

98 - Chapter 3: Porting to Unicode

can convert most of your code in a very simple way: You do absolutely noth-
ing! Consider the following example:
TextOut (Canvas.Handle, 104, 224,
 PChar(str1), Length (str1));

This works equally well in Delphi 2007 and in Delphi 2009, even if the Win-
dows API call ends up being different. This is true for most Win32 API calls
with string parameters, that have been remapped from the A (ASCII) to the
W (Wide) version, along with a change at the compiler level of PChar from
PAnsiChar to PWideChar.

There are some specific APIs, though, that don't have two separate version
and invariably require a PAnsiChar pointer. A typical example is given by
the GetProcAddress function, as exported DLL symbols are limited to
Ansi. In those cases you might have to convert both the string and to cast it
to a different character pointer type. So a line like:
GetProcAddress (hmodule, PChar (strFnName))

would become:
GetProcAddress (hmodule, PAnsiChar (
 AnsiString(strFnName)));

Another particular case is that of the CreateProcessW functions. This one
exists, but can modify the content of the string with the executable file name
and will fail with an exception if you pass a constant string value.

Win32 Console Applications
If you are interested in developing Console applications, keep in mind that
all Console Input/Output in Delphi still is and will remain based on Ansi.
This is true for routines like Read, Write, ReadLn, and WriteLn, among
others. The console window displays characters using an ANSI codepage (or
even an OEM codepage), and the same operations, when redirected to files,
might cause the same problem.

Truly, the Windows Console can be opened in Unicode mode (by running it
with the /u flag: cmd /u), but this is rarely done as it works only if your out-
put is send to a file and not to the screen. Delphi 2009 doesn't support the
Unicode mode of the console.

Marco Cantù, Delphi 2009 Handbook

Chapter 3: Porting to Unicode - 99

If you want to make some experiments you can start with the UnicodeCon-
soleTest demo, in which I use a TTextWriter object60 with a Unicode
encoding, connected with a stream associated with the standard output. Dis-
play to the console screen is incorrect, as expected. Redirecting to a file
produces a UTF-16 file, but one without the BOM. This is the code:
var
 aString: string;
 textWriter1: TTextWriter;
 fileStream1: TFileStream;

begin
 aString := 'My ten Euros (10€)';
 try
 fileStream1 := TFileStream.Create(
 GetStdHandle(STD_OUTPUT_HANDLE));
 textWriter1 := TStreamWriter.Create (
 fileStream1, TEncoding.Unicode);
 try
 textWriter1.Write (aString);
 finally
 textWriter1.Free;
 fileStream1.Free;
 end;
 except
 on E:Exception do
 Writeln(E.Classname, ': ', E.Message);
 end;
end.

PChar and Pointer Math
The PChar type in Delphi has traditionally been used in two totally different
scenarios. The first is to manage characters and strings in a way compatible
with the C language and the Windows API. The second is to replace a gen-
eric pointer type, because the PChar was the only pointer type to support
pointer math. For example, you can move to the next character of a string
writing one of the following two:
var
 pCh1: PChar;

60 The TTextWriter class is covered in Chapter 7.

Marco Cantù, Delphi 2009 Handbook

100 - Chapter 3: Porting to Unicode

begin
 ...
 pCh1 := PChar1 + 1;
 Inc (PChar1);

Not only can you increase a PChar, but you can also decrease it, compare it
with another pointer, and do many other operations.

The Problem with PChar
This use of PChar was so handy that this type was often used instead of
other pointers, like PInteger in the following code fragment. The code
below, extracted from the PointerMath example, reads an array using a
pointer (a PChar pointer) and moving the pointer from one Integer to the
next by adding 4 to it (since an Integer is four bytes). Here is the complete
code of the method:
procedure TFormPointerMath.Button1Click(Sender: TObject);
var
 TenIntegers: array [1..10] of Integer;
 pOneInteger: PChar;
 I: Integer;
begin
 // write
 for I := 1 to 10 do
 TenIntegers [I] := I;

 // now read using a pointer
 pOneInteger := @TenIntegers;
 for I := 1 to 10 do
 begin
 Memo1.Lines.Add(
 'Address: ' + IntToHex (Integer(pOneInteger), 8) +
 ' - Value: ' + IntToStr (PInteger(pOneInteger)^));
 pOneInteger := pOneInteger + 4;
 end;
end;

If you compile this code in any version of Delphi from Delphi 2 to Delphi
2007, you'll get an output like the following:
Address: 0012F4A8 - Value: 1
Address: 0012F4AC - Value: 2
Address: 0012F4B0 - Value: 3
Address: 0012F4B4 - Value: 4
Address: 0012F4B8 - Value: 5
Address: 0012F4BC - Value: 6

Marco Cantù, Delphi 2009 Handbook

Chapter 3: Porting to Unicode - 101

Address: 0012F4C0 - Value: 7
Address: 0012F4C4 - Value: 8
Address: 0012F4C8 - Value: 9
Address: 0012F4CC - Value: 10

You can see that the address is increased by 4 every time, and the proper
value is returned. I have to underline it, because if you now recompile the
same exact code in Delphi 2009, you'll get totally different output:
Address: 0012F4AC - Value: 1
Address: 0012F4B4 - Value: 3
Address: 0012F4BC - Value: 5
Address: 0012F4C4 - Value: 7
Address: 0012F4CC - Value: 9
Address: 0012F4D4 - Value: 29043072
Address: 0012F4DC - Value: 4476177
Address: 0012F4E4 - Value: 4400843
Address: 0012F4EC - Value: 4403501
Address: 0012F4F4 - Value: 4474789

This is not what the code meant, of course, but it is what the code says.
Incrementing the pointer by 4 characters in Delphi 2009 means moving 8
bytes ahead, since each character is now two bytes. Not only the output is
wrong, but we are also doing an illegal memory access, that could be very
dangerous in cases where we were writing to that memory area.

From PChar to PByte
If this problem is potentially troublesome, at least for a lot of low-level code,
the solution is at hand. In the code above, you can simply replace the ver-
sion-specific PChar type with the version-agnostic PByte type61. A pointer
to byte, in fact, remains the same and behaves the same regardless of the
size of characters. All you have to do in a method like the one above is to
change the pointer variable declaration to:
var
 pOneInteger: PByte;

Without changing anything else in the code, recompile the program and it
should work. The good thing is that (in Delphi 2009) PByte supports the
same pointer math that PChar supports. In past versions of Delphi, PByte

61 An alternative solution, which is more compatible with past versions of Delphi, is to
use PAnsiChar rather than PChar. However, using PByte is generally recommen-
ded as it make your intent more clear and is more readable than using PAnsiChar.

Marco Cantù, Delphi 2009 Handbook

102 - Chapter 3: Porting to Unicode

didn't support pointer math, but you could still use it in an algorithm like
the one discussed here by changing the plus one with an increment call:
Inc (pOneInteger, 4);

That fact that Inc and Dec work with most pointer types is little known
among Delphi users. Still, having the full pointer math means you can also
compare pointers, and do other operations.

PInteger and the POINTERMATH Directive
Still, as we are dealing with Integers, wouldn't it be better to write the code
like this (changing the increment to one and skipping one of the casts of the
original code)?
procedure TFormPointerMath.btnPIntegerClick (
 Sender: TObject);
var
 TenIntegers: array [1..10] of Integer;
 pOneInteger: PInteger;
 I: Integer;
begin
 // write
 for I := 1 to 10 do
 TenIntegers [I] := I;

 // now read using a pointer
 pOneInteger := @TenIntegers;
 for I := 1 to 10 do
 begin
 Memo1.Lines.Add(
 'Address: ' + IntToHex (Integer(pOneInteger), 8) +
 ' - Value: ' + IntToStr (pOneInteger^));
 pOneInteger := POneInteger + 1;
 end;
end;

Again, this was possible using an Inc call even in Delphi 2007 (and the
PointerMathD2007 example, you can open with that version of the IDE,
proves it), but in Delphi 2009 you can actually compile the code above by
adding to the source code the directive:
{$POINTERMATH ON}

Marco Cantù, Delphi 2009 Handbook

Chapter 3: Porting to Unicode - 103

Don't use PChar for Pointer Math
To summarize this section, stop using PChar for anything that isn't charac-
ter or string related. If you need to be able to keep compiling your code in
past versions of Delphi, you can use Inc and Dec and possibly change some
of the other code. If all you need to support is Delphi 2009, convert the code
to PByte (generally the easier route) or use specific pointer types and the
new POINTERMATH directive.

In any case, doing a search for PChar on your entire code base is generally a
good idea!

Variants and Open Arrays
Parameters

When you are working with variants, most variant to string conversion code
will work as expected, as there is a new variant type:
varUString = $0102;
 { Unicode string 258 } {not OLE compatible}

All variant-based conversions should work properly, not causing much dif-
ference in your variant-related code, unless you have to interact to COM or
OLE automation, in which case you still have to use the WideString type (as
before, so this is not an actual change).

When working with variant open array parameters, and other untyped data
structures, instead, the AnsiString and UnicodeString cases must be
handled specifically. For example the TVarRec structure has now three dis-
tinct string-related entries (it used to have two), among many other types
I've omitted:
type
 TVarRec = record
 case Byte of
 vtString: (VString: PShortString);
 vtAnsiString: (VAnsiString: Pointer);
 vtUnicodeString: (VUnicodeString: Pointer);
 ...

Marco Cantù, Delphi 2009 Handbook

104 - Chapter 3: Porting to Unicode

If you process an open array parameter with a case statement that has spe-
cific branches for strings, you have to consider this new alternative.

What's Next
This ends the coverage of Unicode support in Delphi 2009. Next, in Part II
I'll take an in-depth look at the changes in the IDE, the compiler and the
RTL. In the RTL section we'll get back to further string management fea-
tures. And further on, in the database part of the book, I'll cover how the
changes introduced for Unicode support affect the TDataSet class and
related classes.

Marco Cantù, Delphi 2009 Handbook

Part II: Delphi 2009 and Its Compiler - 105

Part II:
 Delphi 2009 And

Its Compiler

Now that I have fully covered the most important new feature of Delphi
2009, Unicode support, it is about time to open up the entire development
environment, the compiler, the runtime libraries. This entire section is on
core and low-level features, while the user interface and database material
will be covered in following parts of the book.

● Chapter 4: New IDE Features

● Chapter 5: Generics

● Chapter 6: Anonymous Methods

● Chapter 7: More Language and RTL Changes

Marco Cantù, Delphi 2009 Handbook

106 - Part II: Delphi 2009 and Its Compiler

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 107

Chapter 4: New
IDE Features

The 6th incarnation62 of the Galileo IDE has only a limited set of new capabil-
ities, if you don't take into account the fact that everything has been
converted to Unicode, which was probably far from trivial. The most relev-
ant improvements relate with the new extensions to the Project Manager
and the ability to share project options among different projects, using the
new options files. Windows resource management improves significantly in
Delphi 2009, too.

62 I'm counting them as follows: 1 was C#Builder, 2 was Delphi 8, 3 was Delphi 2005, 4
was Delphi 2006 (or Borland Developer Studio), 5 was Delphi 2007 (or RAD Studio).
The number 6.0 is confirmed also by the name of the folder used by default to install
the product.

Marco Cantù, Delphi 2009 Handbook

108 - Chapter 4: New IDE Features

Installing and Running
Like Delphi 2007, the installation of Delphi 2009 is based on InstallAware.
This time around, though, the installation experience has been considerably
improved, particularly in speed. Delphi 2009 installation can be completed
in 20 minutes rather than several hours. The installation of the Update 1 of
the product (released at the end of October 2009) is equally smooth.

A noticeable change in this respect is the fact that the help is now a separate
installation, so it can be updated more frequently and separately from the
main product (so you don't have to reinstall Delphi to get updated help, or to
reinstall help should you want to reinstall the IDE). Installing help can take
way more time than installing the actual product and the help install image
is bigger than the IDE one.

When installing on Windows Vista, you'll have (by default) the product
installed in the following folders:
C:\Program Files\CodeGear\RAD Studio\6.0
C:\Users\Public\Documents\RAD Studio\6.0\Demos\
C:\Program Files\Common Files\CodeGear Shared

.NET SDK Not Needed
Previously, since Delphi 8 up to and including Delphi 2007, one of the pre-
requisites for installing the IDE was the presence of the Microsoft .NET SDK
(version 1.1 earlier, version 2.0 later)63. It is not needed for Delphi 2009.
You still have to install the considerably smaller Microsoft .NET runtime,
which you might already have as part of the operating system, but don't
need the Development Kit, which is much bigger and requires hundreds of
MB.

The help engine used by CodeGear is Microsoft's Document Explorer, or
DExplorer. This was previously available only in the SDK, but now can be

63 The .NET SDK was required for the Document Explorer, until Microsoft made avail-
able a standalone help installer. Other portions of the .NET architecture used by the
Delphi IDE, including the MSBuild engine, are part of the standard runtime, not of
the SDK.

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 109

deployed as a separate install, which is what CodeGear is using in this ver-
sion of Delphi.

Delphi help is very large (which is why it takes so much time to install), as it
includes both CodeGear documentation and the Microsoft Platform docu-
mentation. In this release, however, the team fixed some “ranking” issues so
that Delphi-specific topics should always be listed before the generic plat-
form ones. Delphi-specific content was also much improved.

Windows Install Clean Up
At times, when uninstalling Delphi to replace it with an updated version, the
installer complains, stops and won't work as expected. In these cases, Code-
Gear recommends cleaning all of the application folders (including some
hidden ones that depend on the operating system). An alternative it to use
Microsoft own Windows Install Clean Up utility, that you can find at:
http://support.microsoft.com/default.aspx?
 scid=kb;en-us;290301

Beware that using such a low-level tool can hamper your system, so proceed
with caution (only after reading the instructions and at your own risk).

The -idecaption Flag
You probably know (although this was a well-kept secret for many years64)
that you can run multiple instances of the IDE, possibly at the same time,
with different registry settings using the -R command line flag.

The problem if you run two different versions of the IDE at the same time is
that it is hard to tell which is which. Another companion command line
parameter for the IDE is -idecaption, that takes a caption as value. Sum-
ming the two flags you could run the IDE with the following link:
"C:\Program Files\CodeGear\RAD Studio\6.0\bin\bds.exe"
-pDelphi -rSmall -idecaption="Small Tiburòn"

64 I documented the -R flag in Chapter 1 of the book “Delphi 2007 Handbook”, the sec-
tion “Running the Delphi IDE”.

Marco Cantù, Delphi 2009 Handbook

110 - Chapter 4: New IDE Features

This command runs the Delphi IDE with the Delphi Win32 personality only,
activated the “Small” registry settings, and changes the IDE caption to
“Small Tiburòn65”, as shown here:

If not specified from the command line, the IDE caption is retrieved from
the Registry, in the Personalities section, in which there is a different string
for each version (or active personality) of the IDE.

Managing Delphi Projects
Managing projects is a very common operation. If Delphi 2007 added some
brand new concepts, like the MSBuild support, the target builds (Debug and
Release) and the pre-build and post-build events, the new version makes
these features more flexible and much easier to use, starting with a signific-
ant revamp of the Project Manager itself. Before we look at the Project
Manager, though, we have to look to upgrading project files and the
renewed Project Options dialog box.

Upgrading Project Configuration Files
Since the early days of Delphi, the project source code file (with the .DPR
extension) contains Object Pascal code and uses one or more separate pro-
ject configuration files for storing other settings. The format and extension
of the project configuration file changed a few times in recent versions,
moving from an INI file to an XML file and then to an XML file for MSBuild
(the .DPROJ file format).

65 As you might have heard, Tiburòn was the field test name for Delphi 2009.

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 111

From Delphi 2007 to Delphi 2009 the overall format of this project config-
uration file doesn't change. But its content is indeed different, and Delphi
2007 doesn't recognize further options added by the newer version of the
IDE. When you open an existing Delphi 2007 project, the Delphi 2009 IDE
will ask you for the name of a backup file into which it can copy the existing
version of the project configuration file:

The default name for the project configuration file backup is the project
name with the extension .dproj.2007. In this specific case, for example, I
renamed the project file as IedMonitor2007.dproj. After you perform this
operation, the IDE will add to the message pane the line:
Upgrading project. Backup
C:\progetti\IedMonitor\IedMonitor2007.dproj created.

Note though, that an updated Delphi 2009 version of the project configura-
tion file is not create until you actually save it.

The backup version will let you reopen the project in Delphi 2007. If you
need backwards compatibility, though, a better idea might be to save the
Delphi 2009 version of the project with a different name.

In the new .DPROJ file, Delphi 2009 adds a new project version tag:
 <ProjectVersion>11.1</ProjectVersion>

The upgrade involved changes in the build configuration (as explained
later), and in the resource management. The following sections are new or
heavily modified:
<PropertyGroup Condition="'$(Config)'=='Release' or

'$(Cfg_Release)'!=''">
<Cfg_Release>true</Cfg_Release>
<CfgParent>Base</CfgParent>

Marco Cantù, Delphi 2009 Handbook

112 - Chapter 4: New IDE Features

<Base>true</Base>
</PropertyGroup>
<PropertyGroup Condition="'$(Config)'=='Debug' or

'$(Cfg_Debug)'!=''">
<Cfg_Debug>true</Cfg_Debug>
<CfgParent>Base</CfgParent>
<Base>true</Base>

</PropertyGroup>
<PropertyGroup Condition="'$(Base)'!=''">

<DCC_DependencyCheckOutputName>SimpleApp.exe
</DCC_DependencyCheckOutputName>

</PropertyGroup>
<ItemGroup>

<DelphiCompile Include="SimpleApp.dpr">
<MainSource>MainSource</MainSource>

</DelphiCompile>
<DCCReference Include="SimpleAppMainForm.pas">

<Form>Form30</Form>
</DCCReference>
<BuildConfiguration Include="Base">

<Key>Base</Key>
</BuildConfiguration>
<BuildConfiguration Include="Release">

<Key>Cfg_Release</Key>
<CfgParent>Base</CfgParent>

</BuildConfiguration>
<BuildConfiguration Include="Debug">

<Key>Cfg_Debug</Key>
<CfgParent>Base</CfgParent>

</BuildConfiguration>
</ItemGroup>

It you try reopening this project file in Delphi 2007 (the only past version
recognizing this format), you'll see the following error:

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 113

Project Options Dialog Redesigned
The Project Options dialog box is one of the Delphi dialogs I tend to use
quite often, and I guess I'm not alone. That's why its extensive redesign in
Delphi 2009 at times leaves me puzzled. The redesign involves the pages
with options that are part of the build configuration, and (as we'll see later in
the section “Build Configurations and Configuration Settings”) those pages
of the dialog box are in fact used also inside the Project Configuration Man-
ager. Look for example at the differences in the Delphi Compiler Options
page between Delphi 2007 (here) and Delphi 2009 (in the next page):

The difference is very significant. In the new design check boxes are
replaced by “True/False” and radio buttons by combo boxes with the various
options. There is also a help area at the bottom (minimized in the picture
above, as I wanted to fit all options of the page in the dialog), providing lim-
ited information about the various alternatives. One interesting element the
“description” area provides is the default value for the option.

Marco Cantù, Delphi 2009 Handbook

114 - Chapter 4: New IDE Features

There has been a graphical redesign that takes a while to get used to, also
because items within each group are now listed alphabetically, so they are in
a different order than before. The directory options have been moved under
the main Delphi Compiler node. But beside organizational changes, is there
anything missing or new?

New Project Options for the Compiler
In the “Delphi Compiler/Compiling” page, which used to be called compiler,
the Code Generation section has the following new options:

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 115

● Code inlining control corresponds to the $INLINE compiler direct-
ive and controls how inlining works.

● Emit runtime type information corresponds to -$M flag on the com-
mand line or the $M directive, and determines the generation of
runtime time information for a given class (or all of the classes of a
project).

● Minimum enum size corresponds to -$Z flag (or the $Z directive)
and determines the minimum size used for values of enumerated
types (a Byte, a Word, a Double Word, or a Quad Word).

● String format checking, which is on by default, can be disabled to
avoid some automatic string format checks66 and corresponds to the
$STRINGCHECKS directive. This compiler option is new to Delphi
2009 and was supposed to remain undocumented and fairly hid-
den... so it is quite a surprise to see it prominently in Project Options
dialog box.

● Code page was already in past versions but is now much more relev-
ant in relationship with how the AnsiString type works, again as
covered in Chapter 2.

The Debugging section has the new option Use imported data references
(mapped to $G), which controls the creation of imported data references
(increasing memory efficiency but preventing the access of global variables
defined in other runtime packages).

The Runtime errors and Syntax options sections have the same elements
(and also the same defaults) as past versions of Delphi. The Other options
section sports new options, except the Generate XML documentation that
was already available:

● Additional switches to pass to the compiler can be used to insert
directly further command line compiler options not specifically sup-
ported by the IDE, although having this feature available now
technically means that Delphi 2009 now supports each and every
compiler option.

66 As we saw in Chapter 2, in many places within the Delphi RTL, there are calls to the
EnsureUnicodeString function and other functions of the Ensure String family.
You can ask the compiler to skip these extra calls by disabling using the --string-
checks compiler options or the $STRINGCHECKS directive. These switches are not
documented and not officially supported, but directly available in the Project Options
dialog of the IDE, which I find quite odd.

Marco Cantù, Delphi 2009 Handbook

116 - Chapter 4: New IDE Features

● Allow unsafe code will let you compile code deemed unsafe for a
managed environment like .NET and makes little (or no) sense with
the Win32 compiler.

● Look for 8.3 filenames also instructs the compiler to work on very
old versions of Windows and corresponds to the -P compiler option.

● Output unit dependency information will turn on the --depends
compiler flag, which is apparently not maintained for now.

Other New Project Options
The Hints and Warnings page corresponds to the old Compiler Messages
page. There are, of course, several new hints related with Unicode strings
and other new compiler features.

The Linking page, which used to be called Linker, is visually quite different
(and much more compact, as there were a few radio buttons) but the only
new option is Set base address for relocatable images.

The main level Delphi compiler page has exactly the same options previ-
ously found under Directories/Conditionals. What can be quite confusing is
that there is another page named Directories and Conditionals which is part
of the resource compiler configuration under the Resource Compiler main
level page. These pages are brand new and let you control the resource com-
piler from the Delphi IDE in ways never experienced in the past. There is a
specific section later in this chapter, “Managing Resources in the IDE”, cov-
ering this topic.

Default Projects Location
Since Delphi 2005, the default location for all new projects has been under
the user documents folder. Few Delphi developers know this can be modi-
fied by setting a value for the Default project edit box in the Environment
Options page of the Tools | Options dialog box.

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 117

The Project Manager
Along with a redesign of the Project Options dialog box (which I still haven't
completely covered when examining the new build configuration features)
Delphi 2009 sees a significant update of the Project Manager pane, one of
the most commonly used panes of the IDE. Even a cursory glance of its win-
dow will reveal some of its new features:

You can see there is a new Build Configurations node, with sub nodes, used
to activate a build configuration in a much simpler way than in Delphi 2007.
This topic is covered in the later section “Build Configurations and Config-
uration Settings”.

The Project Manager toolbar has several new buttons, up to the point that
you'd generally want to remove the Text Labels using the context menu of
the toolbar itself. The new Sync button selects the current file in the editor
in the Project Manager, only if the file is part of the project, of course. The
opposite operation (that is, activate the current selection of the Project Man-
ager in the editor) can be done with a double-click.

The Expand and Collapse buttons will recursively expand and collapse all
nodes under the current node. Apply Expand to a project group and you'll
see a tree with all configuration and file nodes of all project in the group.
Very handy, I have to say. The fourth new button, Views, is covered in the
next section.

Marco Cantù, Delphi 2009 Handbook

118 - Chapter 4: New IDE Features

Project Manager Views
Another brand new feature is the Project Manager views configuration. On
the right side of the toolbar, you can see a new Views button, that let's you
change how the Project Manager shows files that have been placed in differ-
ent folders. There are three options. I tested them by creating a sample
program (called ProjManagerTest) with two forms in the main folder and
two units in a secondary folder called Shared and placed at the same level in
the file system hierarchy:

● Directory (Nested) is the default setting (and the only one avail-
able in Delphi 8 to Delphi 2007) that shows the files grouped by
directory and the directories mimic the actual disk structure with
separate nodes you can expand (so you might have have to expand
multiple nodes to move down a couple of sub-folders):

● Directory (Flat) is a new view in which the files are still divided by
directory but each different directory is part of a list regardless of its
position on the file system. In other words, you get a list of folders,
each containing files, rather than (possibly) other nested folders:

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 119

● List is a new view corresponding to the traditional Delphi 7 list of
files in the project manager. Directories are simply ignored and you
get an alphabetic list of files:

Build Configurations and Configuration
Settings

As I mentioned earlier and you can see from the images on the previous
pages, the Project Manager has a new Build Configurations node for every
project (that is, in cases where you are working with a project group with
multiple projects active). This node replaces the rather cumbersome separ-

Marco Cantù, Delphi 2009 Handbook

120 - Chapter 4: New IDE Features

ate window used to manage the build configuration in Delphi 2007. Using
the node and its sub-nodes you can change the current build configuration
with a double click, and execute an actual build directly on the given node.

By selecting either a specific build configuration or the main node, you can
also add a new configuration. Depending on the item selected when you do
the operation you'll create a main configuration or a sub-configuration. To
be more precise, the node you pick determines the base configuration, since
even the predefined configurations inherit their core settings from the Base
configuration (which is the core configuration from which Debug and
Release inherit). What do I mean by “inherit settings” from a configuration?
Delphi 2009 has a new configuration management system, in which you can
apply a setting to a specific configuration (like Debug or Release) or set an
option that the two configurations don't specify but inherit from the Base
configuration. In a specific configuration you can see the specific value and
the one inherited from a base configuration in two consecutive lines, see if
they match and change either one or the other (affecting also the specific
configuration). This is achieved by expanding each configuration setting line
by selecting the plus sign on the left. This is what you can get by expanding
the three Runtime errors lines in the Delphi Compiler/Compiling page:

Modifying the setting in the Base configuration will affect also any other
configuration which inherits from that setting.

In the Project Manager you can also select a build configuration and export
its settings to an “option set” file. This is like saving a configuration tem-
plate or skeleton to an external file, and the configuration will be linked to
the file.

This makes it easy to move those same settings to a new or another existing
project, as you can use the Project Manager (using the Apply Options Set
local menu item while on a build configuration) or the Project Options dia-
log box (using the Apply Options button) to import a set of configuration
options. In both cases Delphi opens up the Apply Option Set dialog box, in
which you can pick a file and choose whether to keep the external configura-

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 121

tion file linked (so that a change in the file will be reflected in the projects
using it) or simply merge the current settings using some priority rules:

Once you have created an external option set on a file, you can edit it from
any project referring to it, using the Edit local menu of the Project Manager
pane. This opens up the an editor containing a subset of the pages of the
Project Options dialog box, as shown below:

The .OPTSET file is an XML file with a format similar to the .DPROJ format,
again based on the MSBUILD XML format, and an OptionSet project type.
In the specific example you can find in the ProjManagerTest folder, the Pro-
jManagerTestOptionsSet.optset file has the following content:

Marco Cantù, Delphi 2009 Handbook

122 - Chapter 4: New IDE Features

<Project xmlns="http://.../msbuild/2003">
 <PropertyGroup>
 <DCC_RunTimeTypeInfo>true</DCC_RunTimeTypeInfo>
 </PropertyGroup>
 <ProjectExtensions>
 <Borland.Personality>Delphi.Personality
 </Borland.Personality>
 <Borland.ProjectType>OptionSet</Borland.ProjectType>
 <BorlandProject><Delphi.Personality/></BorlandProject>
 </ProjectExtensions>
</Project>

Project Configuration Manager
With the build options available directly in the Project Manager pane, you
don't have to use the Configuration Manager to change the current build
configuration. Still, this dialog box was quite handy as it let you change the
build configuration for many projects in a project group at the same time. In
fact, the Configuration Manager is also available in Delphi 2009, and in a
much improved version that let's you manage the various build configura-
tion and option sets for all of the projects of a group at once.

To invoke the Configuration Manager you don't use the local menu of the
Project Manager, as in Delphi 2007, but select the corresponding item in the
Project menu of the IDE. When you do, you'll get this redesigned user inter-
face:

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 123

On the left side you can see a list of projects with the active configuration for
each of them. On the right side you can see some details for the configura-
tion selected in the tab above it, like the list of the non-default settings (the
one in the image is the summary of the option set file listed in the previous
section). Using the tab you can also filter the projects on the left side that
have the given configuration or option set active.

In Delphi 2009, the Configuration Manager let's you edit the project options
for each build configuration, add new configurations, create or edit option
sets, modify the active configuration... and perform most of the related
operations in a single location, even if it's not trivial to use.

When you are working on multiple projects within a project group, the Con-
figuration Manager has a distinct advantage over browsing in the Project
Manager to work on the build configurations. For single projects, the Project
Manager now has all you need.

Managing Resources in the IDE
In the most recent versions of Delphi, you could add resource scripts (.RC
files) or compiled resource files (.RES files) to the Project Manager to let it
compile them along with the project linking them to the executable. In
Delphi 2009 managing resources has been simplified by the inclusion of a
few more tools.

First, you can now drag individual resource files to the Project Manager to
get them included as resources in a project. You can drag icons, bitmaps,
and more. Delphi will generate a resource script files for these extra project
resources, and compile it directly along with your program, embedding
these resources in the executable. You can change any attribute of these
resource files (including their internal name) in the Object Inspector:

Marco Cantù, Delphi 2009 Handbook

124 - Chapter 4: New IDE Features

Second, under the Project pull-down of the main menu of the IDE there is a
new menu item, Resources. Selecting this items brings up the Resources
dialog box, which you can use to revise all of the resources of the program,
add new resource files, rename them, change the format, and so on:

By adding a few resources to a project, at compile time Delphi will generate
a proper resource file for you. For the ResourceTest program (with the
resources depicted above), Delphi 2009 generates a resource script file list-
ing the project resources called ResourceTestResource.rc:
Icon_Factory Icon "FACTORY.ICO"
Bitmap_Shipping Bitmap "SHIPPING.BMP"

This resource script file is not added to the project (if you do so, you'll see
duplicate resource warnings), but it is compiled along with it. In fact, if you
make an error, like declaring your bitmap as an icon, the compiler will stop
with the error:
[BRCC32 Error] ResourceTestResource.rc(2): resource file
SHIPPING.BMP is not in 3.00 format

and open the resource script file at the offending line. At compile time,
Delphi 2009 generates (or updates) the resource script file, compiles it, and
binds it to the executable. The intermediary file is a file with extension DRES
that's included in the project with a directive automatically added to the
project source code file (along side with the standard RES file including the
project icon and string resources):
program ResourceTest;

{$R *.dres}

uses
 Forms,
 ResourceTest_MainForm in

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 125

 'ResourceTest_MainForm.pas' {FormResourceTest};

{$R *.res}

begin
 Application.Initialize;
 ...

You can see the resource compilation steps in the Output view produced by
the compiler since Delphi 2007 introduced MSBuild support. Here is the
related output you'll see if you keep the Verbose flag of the resource com-
piler options on:
c:\program files\codegear\rad studio\6.0\bin\cgrc.exe
-c65001 -v ResourceTestResource.rc -foResourceTest.dres

CodeGear Resource Compiler/Binder Version 1.00 Copyright
(c) 2008 Embarcadero Technologies Inc.

Microsoft (R) Windows (R) Resource Compiler Version
6.0.5724.0
Copyright (C) Microsoft Corporation. All rights reserved.

Creating ResourceTest.dres
Using codepage 65001 as default

ResourceTestResource.rc.

Writing ICON:1, lang:0x409, size 744
Writing GROUP_ICON:ICON_FACTORY, lang:0x409, size 20.
Writing BITMAP:BITMAP_SHIPPING, lang:0x409, size 44264

In case you've never used Windows resources directly, the ResourceTest
program has a few lines of code to load the icon as the application and main
form icon and to load the bitmap in an Image component:
procedure TFormResourceTest.btnGifClick(
 Sender: TObject);
begin
 Image1.Picture.Bitmap.LoadFromResourceName(
 hInstance, 'Bitmap_Shipping');
end;

procedure TFormResourceTest.btnIconClick(
 Sender: TObject);
begin
 Icon.LoadFromResourceName(hInstance, 'Icon_Factory');
 Application.Icon.LoadFromResourceName(
 hInstance, 'Icon_Factory');
end;

Marco Cantù, Delphi 2009 Handbook

126 - Chapter 4: New IDE Features

A “New” Resource Compiler
Recent versions of Delphi, up to and including Delphi 2007, used the Bor-
land Resource Compiler (BRCC32.EXE) an outdated program emitting the
following historical copyright notation:
Copyright (c) 1990, 1999 Inprise Corporation. All rights
reserved.

Delphi 2009 ships with a new resource compiler, or (to be more precise) a
different resource compiler: the one from the Microsoft Windows SDK. This
is certainly beneficial is terms of support for all of new resource formats
Windows handles, but causes a few problems due to the fact the the Borland
resource compiler from the early days extended the Microsoft one, provid-
ing extra features that are now lost.

You can still decide to use the Borland resource compiler, by using the cor-
responding option67 in the Resource Compiler page of the Project Options
dialog (which let's you also edit other parameters of the resource compiler):

The Windows SDK Resource Compiler is invoked through the new Code-
Gear Resource Compiler/Binder, which is simply a front end to the SDK
compiler. Changes in the resource compiler include the missing ability to
handle image (binary) data inline, to support trailing commas after strings

67 During my tests on the final release of Delphi 2009, the option to enable the Borland
resource compiler seemed to be ignored by the IDE. Maybe a fix is coming. As these
resource compilers are external executable files, you can certainly rename them to re-
direct the operations, but as the parameters being passed are different, this can lead
to errors.

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 127

in a string list, the different way to handle strings (now treated as C-lan-
guage strings, forcing you to escape any \ in a file name with a double
backslash), the different way to manage the folders for includes...

Again, if you've never used resource files directly, you can probably ignore
any of these changes. Anything managed directly by the Delphi environ-
ment, from the embedding of DFM files as resources to the use of the
resourcestring declaration, is fully backwards compatible. If you did use
resources directly, you should revise your resource files with some care.

The Delphi Class Explorer
A brand new pane in Delphi 2009 is the Delphi Class Explorer pane (avail-
able from the Delphi Class Explorer item of the View menu). The Delphi
Class Explorer offers a project wide representation of the symbols, differ-
ently from the Structure View68, that shows a (somewhat similar) graphical
representation of the elements of a single unit.

In the Delphi Class Explorer at the first level, you'll see a list of nodes host-
ing the global definition of each unit (plus the project file), while the
remaining nodes show all of the classes defined in the project:

68 The Structure View for a source code file was originally called Code Explorer until
Delphi 7, not to be confused with the new Delphi Class Explorer.

Marco Cantù, Delphi 2009 Handbook

128 - Chapter 4: New IDE Features

For each class you can see the specific members and the relationship with
other classes. This is depicted according to the selection in the first toolbar
button: Base to derived (displayed before), Derived to base, or Container
(displayed below).

In this last case, classes (and globals) are divided by unit and no inheritance
relationship is displayed. The local menu let's you add a new field to a class,
a new operation (or a method, including constructors and destructors), or a
property, as in the image below:

Adding a property works in a proper Delphi way (much more than using
UML-based modeling). The tool tends to map to setter and getter methods
though you can go for a direct field mapping if you prefer, by adding a prop-

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 129

erty and asking for a corresponding field to be created. The Class Explorer
will add the following lines to the class, as in the previous image:
type
 TBaseClass = class
 strict private
 function GetAnotherInteger : Integer;
 procedure SetAnotherInteger(val : Integer);
 public
 property AnotherInteger: Integer
 read GetAnotherInteger write SetAnotherInteger;
 strict private
 var
 FAnotherInteger:Integer;
 end;

I find the use of a strict private var block quite odd, but it is formally
correct and probably adding the extra var keyword makes code generation
easier and less risky. Still, if I were to reformat the code to my liking, I'd take
way more time than declaring the property and use Class Completion, which
produces cleaner and more standard Delphi code. For me, the Delphi Class
Explorer is mostly a tool for navigating the source code of a project, and I'd
rather use it than the Model View unless I needed UML diagrams.

Other New Features
The updated Project Options dialog, the new features of the Project Man-
ager and the extended build configurations, the improved support for
resources, and the Class Explorer are probably the most significant new fea-
tures of the IDE in Delphi 2009, if you don't consider the fact that the entire
IDE has been Unicode enabled.

There are many other minor features that can help you in the day-by-day
work with the Delphi development environment, listed in this section. A
noticeable set of improvements, described in a specific chapter, related to
COM. The changes in the IDE related to the large changes in COM support
and the Type Library editor, are covered in Chapter 9.

Marco Cantù, Delphi 2009 Handbook

130 - Chapter 4: New IDE Features

Tool Palette Search Box
In Delphi 2006, you could type while the Tool Palette was selected to filter
components starting with those letters (with the exception of the initial T).
In Delphi 2007 you could do the same, but also by selecting text inside the
component name, so you could pick, say, IdHTTP by typing the more obvi-
ous HTTP. In Delphi 2009, the Tool Palette has the same behavior as Delphi
2007, but with a different user interface that makes it more obvious to all
users that you can search the components list by typing:

As you select the palette (the handy shortcut is Ctrl+Alt+P), you can start
typing in the search box (rather than in the caption of the pane) and the Tool
Palette will filter the components being displayed:

There is another change in the Tool Palette. As many people complained
because of the excessive scrolling needed to reach the categories towards the
bottom of the list, the auto-collapse of categories is now the default beha-
vior. Another behavior you can fine-tune is whether the current selection of
the Search box is kept after selecting a component or not.

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 131

Updated Components Wizards
The dialog boxes used to create a new VCL component or import a compon-
ent (an ActiveX control or a .NET assembly, to be used like a COM control)
have been improved and turned into multi-step wizards.

The actual capability to create an empty component skeleton or one wrap-
ping an external control, has not been modified significantly. The only new
feature is the ability (for both wizards) to install the component into an
existing package or into a new one which you have to name.

The relevant change is in the user interface of this wizard you can activate
from the Components menu of the IDE. For example, the initial page of the
New VCL Component wizard has a search box used to filter the base class
component to inherit from:

As you proceed, filling in the class name and other standard details, you'll
get to the final page, which let's you create a new package or add the new
component to an existing one, as shown in the next page.

Marco Cantù, Delphi 2009 Handbook

132 - Chapter 4: New IDE Features

In case you have an active package project, you'll see an extra option to add
the new component to it. Similar capabilities have been added to the Import
Component wizard. We'll see some of these wizards in practice in Chapter 9,
while cover COM programming and in particular importing a type library in
Delphi 2009.

Anything New in the Editor?
While the last few versions of Delphi have seen useful improvements in the
editor, with the introduction of Block Completion, Live Templates, Refactor-
ings, and many updates in the Code Insight toolset, Delphi 2009 provides
updated support for new language features but little more in this area.

What is new is the Auto Invoke option of Code Completion. This is disabled
by default and can be enabled in the corresponding section of the Code
Insight page of the main Options dialog box of the IDE. What is the effect of
Auto Invoke? The editor should keep track of your recent selections and
offer to repeat them. How this actually works in practice is hard to tell.

Marco Cantù, Delphi 2009 Handbook

Chapter 4: New IDE Features - 133

Debugger
Like the rest of the IDE, the debugger has been worked on to fully support
Unicode too. This support was partially available in past versions, but
Delphi 2009 extends it. For example, if you inspect a string variable with
Run | Inspect (or Debug | Inspect in the editor local menu) not only will you
get the proper Unicode value but an indication at the bottom will inform you
of the actual string type of the variable.

In the next page you can see a comparison between an the Inspect pane for
an AnsiString and a UnicodeString (reported simply as string):

In this case Delphi is actually debugging the btnWarningClick of the main
form of the StringConvert example of Chapter 2. The two windows are actu-
ally showing the same string, although the first couldn't be converted
properly due to the Chinese characters.

There are also other features of the debugger that don't relate to Unicode
support. A minor thing is that the CPU view supports the SSE3 and SSE4
instructions (minor at least for somebody who infrequently uses assembly
language like me).

A way more interesting, even if still quite low-level, feature is the support of
the debugger for the Wait Chain Traversal69 feature of Vista (and Windows
Server 2008). In the Threads Status pane there is now an extra column with
information about the various threads that are contributing to a deadlock.

69 An MSDN technical article that describes Wait Chain Traversal at the operating sys-
tem level is available at http://msdn.microsoft.com/en-us/library/ms681622.aspx.
Chris Hesik of CodeGear blogged about this new feature of the Delphi debugger at
http://blogs.codegear.com/chrishesik/2008/07/21/34833.

Marco Cantù, Delphi 2009 Handbook

134 - Chapter 4: New IDE Features

This information can be extremely important to understand what happens
in your multi-threaded applications.

Debugging and New Language Features
Even if the debugger looks quite similar to the previous version, a lot of
effort was devoted to let users debug applications that use generics and
anonymous methods. Because of the sophisticated code generation done in
the background, the code you are debugging is quite different from that
which you originally wrote. Even if with some limited glitches, debugging
the new language features generally works well enough.

What's Next
Having looked at the new features of the IDE in Delphi 2009, I can now get
back to the language. We have already seen there are many new features
related with UnicodeString and AnsiString support, but the compiler has
many more improvements.

With generic and anonymous methods (or closures) appearing for the first
time in the language, Object Pascal takes its most significant leap forward
since Delphi was introduced. That's why there are two full chapters, plus
some extra information in a third one, fully devoted to the compiler and the
language.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 135

Chapter 5:
Generics

The strong type checking provided by Delphi is useful for improving the cor-
rectness of the code, a topic I tend to stress in my introductory books.
Strong type checking, though, can also be a nuisance, as you might rather
have a procedure or a class that can act on different data types. This issue is
addressed by a new feature of the Object Pascal language, recently added to
similar languages like C# and Java, called generics. This is what I wrote in
1994 in a book about C++70:

Now you can declare a class without specifying the type of one or
more data members: this operation can be delayed until an object
of that class is actually declared. Similarly, you can define a func-
tion without specifying the type of one or more of its parameters
until the function is called.

70 The book is “Borland C++ 4.0 Object-Oriented Programming”, written by me with
Steve Tendon, with a forward by Philippe Kahn.

Marco Cantù, Delphi 2009 Handbook

136 - Chapter 5: Generics

Now, 14 years later, this feature is getting into Object Pascal. You can guess
I'm somewhat excited to have generics (they are called templates in C++) in
Delphi, although I have to say I have witnessed distinct overuse of this fea-
ture that I didn't fully understand at the time. I doubt generics will be
overused in Delphi, quite the contrary: there is the risk that a very signific-
ant language upgrade gets almost unnoticed. This chapter will try to delve
into the topic, showing you the value of generics in Delphi and how they can
be applied even to standard visual programming.

Generic Key-Value Pairs
As a first example of a generic class, I've implemented a key-value pair data
structure. The first code snippet below shows the data structure written in a
traditional fashion, with an object used to hold the value:
type
 TKeyValue = class
 private
 FKey: string;
 FValue: TObject;
 procedure SetKey(const Value: string);
 procedure SetValue(const Value: TObject);
 public
 property Key: string read FKey write SetKey;
 property Value: TObject read FValue write SetValue;
 end;

To use this class you can create an object, set its key and value, and use it, as
in the following snippets of various methods of the main form of the Key-
ValueClassic example:
// FormCreate
kv := TKeyValue.Create;

// Button1Click
kv.Key := 'mykey';
kv.Value := Sender;

// Button2Click
kv.Value := self; // the form

// Button3Click
ShowMessage('[' + kv.Key +',' + kv.Value.ClassName + ']');

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 137

Generics make it possible to use a much broader definition for the value, but
that's not the key point. What's totally different, as we'll see, is that once
you've instantiated the key-value generic class, it becomes a specific class,
tied to a given data type. This makes your code type safer, but I'm getting
ahead of myself. Let's start with the syntax used to define the generic class:
type
 TKeyValue<T> = class
 private
 FKey: string;
 FValue: T;
 procedure SetKey(const Value: string);
 procedure SetValue(const Value: T);
 public
 property Key: string read FKey write SetKey;
 property Value: T read FValue write SetValue;
 end;

In this class definition, there is one unspecified type, indicated by the place-
holder T71. The symbol T is frequently used by convention, but as far as the
compiler is concerned you can use just any symbol you like. Using T gener-
ally makes the code more readable when the generic class uses only one
parametric type; in case the class needs multiple parametric type it is com-
mon to name them according to their actual role, rather than using a
sequence of letters (T, U, V) as it happened in C++ during the early days.

The generic TKeyValue<T> class uses the unspecified type as the type of one
of its two fields, the property value, and the setter method parameter. The
methods are defined as usual, but notice that regardless of the fact they have
to do with the generic type, their definition contains the complete name of
the class, including the generic type:
procedure TKeyValue<T>.SetKey(const Value: string);
begin
 FKey := Value;
end;

procedure TKeyValue<T>.SetValue(const Value: T);
begin
 FValue := Value;
end;

71 “T” has been the standard name, or placeholder, for a generic type since the days the
C++ language introduced templates in the early 1990s. Depending on the authors,
the “T” stands for either “Type” or “Template type”.

Marco Cantù, Delphi 2009 Handbook

138 - Chapter 5: Generics

To use the class, instead, you have to fully qualify it, providing the actual
value of the generic type. For example, you can now declare a key-value
object hosting buttons as value by writing:
kv: TKeyValue<TButton>;

The full name is required also when creating an instance, because this is the
actual type name (while the generic, uninstantiated type name is like a type
construction mechanism).

Using a specific type of the value of the key-value pair makes the code much
more robust, as you can now only add TButton (or derived) objects to the
key-value pair and can use the various methods of the extracted object.
These are some snippets from the main form of the KeyValueGeneric
example:
// FormCreate
kv := TKeyValue<TButton>.Create;

// Button1Click
kv.Key := 'mykey';
kv.Value := Sender as TButton;

// Button2Click
kv.Value := Sender as TButton; // was "self"

// Button3Click
ShowMessage ('[' + kv.Key + ',' + kv.Value.Name + ']');

When assigning a generic object in the previous version of the code we could
add either a button or a form, now we can use only button, a rule enforced
by the compiler. Likewise, rather than a generic kv.Value.ClassName in
the output we can use the component Name, or any other property of the
TButton class.

Of course, we can also mimic the original program by declaring the key-
value pair as:
kvo: TKeyValue<TObject>;

In this version of the generic key-value pair class, we can add any object as
value. However, we won't be able to do much on the extracted objects,
unless we cast them to a more specific type. To find a good balance, you
might want to go for something in between specific buttons and any object,
requesting the value to be a component:
kvc: TKeyValue<TComponent>;

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 139

You can see corresponding code snippets in the same KeyValueGeneric
demo program. Finally, we can also create an instance of the generic key-
value pair class that doesn't store object values, but rather plain integers:
var
 kvi: TKeyValue<Integer>;
begin
 kvi := TKeyValue<Integer>.Create;
 try
 kvi.Key := 'object';
 kvi.Value := 100;
 kvi.Value := Left;
 ShowMessage ('[' + kvi.Key + ',' +
 IntToStr (kvi.Value) + ']');
 finally
 kvi.Free;
 end;

Type Rules on Generics
When you declare an instance of a generic type, this type gets a specific ver-
sion, which is enforced by the compiler in all subsequent operations. So if
you have a generic class like:
type
 TSimpleGeneric<T> = class
 Value: T;
 end;

as you declare a specific object with a given type, you cannot assign a differ-
ent type to the Value field. Given the following two objects, some of the
assignments below (part of the TypeCompRules example) are incorrect:
var
 sg1: TSimpleGeneric<string>;
 sg2: TSimpleGeneric<Integer>;
begin
 sg1 := TSimpleGeneric<string>.Create;
 sg2 := TSimpleGeneric<Integer>.Create;

 sg1.Value := 'foo';
 sg1.Value := 10; // Error
 // E2010 Incompatible types: 'string' and 'Integer'

 sg2.Value := 'foo'; // Error
 // E2010 Incompatible types: 'Integer' and 'string'
 sg2.Value := 10;

Marco Cantù, Delphi 2009 Handbook

140 - Chapter 5: Generics

Once you define a specific type in the generic declaration, this is enforced by
the compiler, as you should expect from a strongly-typed language like
Object Pascal. Type checking is also in place for generic objects as a whole.
As you specify the generic parameter for an object, you cannot assign to it a
similar generic type based on a different and incompatible type instance. If
this seems confusing, an example should help clarifying:
sg1 := TSimpleGeneric<Integer>.Create; // Error
// E2010 Incompatible types:
// 'TSimpleGeneric<System.string>'
// and 'TSimpleGeneric<System.Integer>'

As we'll see in the section “Generic Types Compatibility Rules” in this pecu-
liar case the type compatibility rule is by structure and not by type name.
You cannot assign a different and incompatible type to a generic type once it
has been declared.

Generics in Delphi
In the previous example we have seen how you can define and use a generic
class in Delphi, one of the most far reaching extensions to the Object Pascal
language since Delphi 3 introduced interfaces. I decided to introduce the
feature with an example before delving into the technicalities, which are
quite complex and very important at the same time. After covering generics
from a language perspective we'll get back to more examples, including the
use and definition of generic container classes, one of the main reasons this
techniques was added to the language.

We have seen that when you define a class in Delphi 2009 you can now add
an extra “parameter” within angle brackets to hold the place of a type to be
provided later:
type
 TMyClass<T> = class
 ...
 end;

The generic type can be used as the type of a field (as I did in the previous
example), as the type of a property, as the type of a parameter or return
value of a function, and more. Notice that it is not compulsory to use the
type for a local field (or array), as there are cases in which the generic type is

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 141

used only as a result, a parameter, or is not used in the declaration of the
class, but only in the definition of some of its methods.

This form of extended or generic type declaration is not only available for
classes but also for records (that, in case you didn't notice, in the most
recent versions of Delphi can also have methods, properties, and overloaded
operators). You cannot declare a generic global function, unlike C++, but
you can declare a generic class with a single class method, which is almost
the same thing and doesn't clutter the global name space.

A generic class can also have multiple parameterized types, as in following
case in which you can specify an input parameter and a return value of a dif-
ferent type for a method:
type
 TPWGeneric<TInput,TReturn> = class
 public
 function AnyFunction (Value: TInput): TReturn;
 end;

The implementation of generics in Delphi, like in other static languages is
not based on a runtime framework. It is handled by the compiler and the
linker, leaving almost nothing to the runtime mechanism. Unlike virtual
function calls, which are bound at runtime, template methods are generated
once for each template type you instantiate, and are generated at compile
time! We'll see the possible drawbacks of this approach, but on the positive
side it implies that generic classes are as efficient as plain classes, or even
more efficient as the need for runtime checks is reduced. Before we look at
some of the internals, though, let me focus on some very significant rules
which break the traditional Pascal language type compatibility rules.

Generic Types Compatibility Rules
In traditional Pascal and in Delphi's Object Pascal the core type compatibil-
ity rules are based on type name equivalence. In other words, two variables
are type compatible only if their type name is the same, regardless of the
actual data structure they refer two.

This is a classic example of type incompatibility with arrays (part of the
TypeCompRules example):
type
 TArrayOf10 = array [1..10] of Integer;

Marco Cantù, Delphi 2009 Handbook

142 - Chapter 5: Generics

procedure TForm30.Button1Click(Sender: TObject);
var
 array1: TArrayOf10;
 array2: TArrayOf10
 array3, array4: array [1..10] of Integer;
begin
 array1 := array2;
 array2 := array3; // Error
 // E2010 Incompatible types: 'TArrayOf10' and 'Array'

 array3 := array4;
 array4 := array1; // Error
 // E2010 Incompatible types: 'Array' and 'TArrayOf10'
end;

As you can see in the code above, all four arrays are structurally identical.
However, the compiler will let you assign only those that are type compat-
ible, either because their type has the same explicit name (like TArrayOf10)
or because they have the same implicit (or compiler generated, type name,
as the two arrays declared in a single statement.

This type compatibility rule has very limited exceptions, like those related to
derived classes. A new exception to the rule, and a very significant one, is
type compatibility for generic types, which is probably also used internally
by the compiler to determine when to generate a new type from the generic
one, with all of its methods.

The new rule states that generic types are compatible when the share the
same generic class definition and instance type, regardless of the type name
associated with this definition. In other words, the full name of the generic
type instance is a combination of the generic type and the instance type.

In the following example the four variables are all type compatible:
type
 TGenericArray<T> = class
 anArray: array [1..10] of T;
 end;

 TIntGenericArray = TGenericArray<Integer>;

procedure TForm30.Button2Click(Sender: TObject);
var
 array1: TIntGenericArray;
 array2: TIntGenericArray;
 array3, array4: TGenericArray<Integer>;
begin
 array1 := TIntGenericArray.Create;

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 143

 array2 := array1;
 array3 := array2;
 array4 := array3;
 array1 := array4;
end;

Generic Global Functions (Well, Almost)
As mentioned earlier, you cannot declare a generic global function, but you
can have a generic class with a class method, which is very close. This is a
sample declaration, taken from the TypeCompRules demo:
type
 TGlobalFunction<T> = class
 public
 class function AlmostGlobal: string;
 class function WithParam (t172: T): string;
 end;

There isn't much you can do inside a similar class method (at least unless
you use constraints, covered later in this chapter), so I wrote some code
using special generic type functions (again covered later), which is not relev-
ant to discuss here.

You can call various versions of this “global generic function” as follows:
TGlobalFunction<string>.AlmostGlobal;
TGlobalFunction<Int64>.AlmostGlobal;
TGlobalFunction<TButton>.AlmostGlobal;

If you call the method with a parameter, however, the parameter's type must
match the generic type declaration. So the first two lines below compile, the
latter two won't:
TGlobalFunction<TButton>.WithParam (btnGlobal);
TGlobalFunction<string>.WithParam ('foo');

TGlobalFunction<Integer>.WithParam (btnGlobal); // [Error]
TGlobalFunction<string>.WithParam (203); // [Error]

72 When I first wrote this code, probably with a reminiscence of my C++ days, I wrote
the parameter as (t: T). Needless to say in a case insensitive language like Object
Pascal, this is not a great idea. The compiler will actually let it go but issue errors
every time you refer to the generic type T.

Marco Cantù, Delphi 2009 Handbook

144 - Chapter 5: Generics

Generic Type Instantiation
With the exception of some optimizations, every time you instantiate a gen-
eric type, a new type is generated by the compiler. This new type shares no
code with different instances of the same generic type.

Let's look at an example (which is called GenericCodeGen). The program
has a generic class defined as:
type
 TSampleClass <T> = class
 private
 data: T;
 public
 procedure One;
 function ReadT: T;
 procedure SetT (value: T);
 end;

The three methods are implemented as follows (notice that the One method
is absolutely independent from the generic type):
procedure TSampleClass<T>.One;
begin
 Form30.Log ('OneT');
end;

function TSampleClass<T>.ReadT: T;
begin
 Result := data;
end;

procedure TSampleClass<T>.SetT(value: T);
begin
 data := value;
end;

Now the main program uses the generic type mostly to figure out the in-
memory address of its methods once an instance is generated (by the com-
piler). This is the code (which uses a helper Log function to show log strings
in a Memo control):
procedure TForm30.Button1Click(Sender: TObject);
var
 t1: TSampleClass<Integer>;
 t2: TSampleClass<string>;
begin
 t1 := TSampleClass<Integer>.Create;
 t1.SetT (10);

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 145

 t1.One;

 t2 := TSampleClass<string>.Create;
 t2.SetT ('hello');
 t2.One;

 Log ('t1.SetT: ' +
 IntToHex (PInteger(@TSampleClass<Integer>.SetT)^, 8));
 Log ('t2.SetT: ' +
 IntToHex (PInteger(@TSampleClass<string>.SetT)^, 8));

 Log ('t1.One: ' +
 IntToHex (PInteger(@TSampleClass<Integer>.One)^, 8));
 Log ('t2.One: ' +
 IntToHex (PInteger(@TSampleClass<string>.One)^, 8));
end;

The result is something like this (the actual values might vary):
t1.SetT: C3045089
t2.SetT: 51EC8B55
t1.One: 4657F0BA
t2.One: 46581CBA

As I anticipated, not only does the SetT method get a different version in
memory generated by the compiler for each data type used, but even the One
method gets a new version, despite the fact they are all identical.

Moreover, if you redeclare an identical generic type, you'll get a new set of
implementation functions. Similarly, the same instance of a generic type
used in different units forces the compiler to generate the same code over
and over, possibly causing significant code bloat. For this reason if you have
a generic class with many methods that don't depend on the generic type, it
is recommended to define a base non-generic class with those common
methods and an inherited generic class with the generic methods: this way
the base class methods are only compiled and included in the executable
once.

Generic Type Functions
The biggest problem with the generic type definitions we have seen so far is
that there is very little you can do with objects of the generic class type.
There are two techniques you can use to overcome this limitation. The first
is to make use of the few special functions of the runtime library that spe-

Marco Cantù, Delphi 2009 Handbook

146 - Chapter 5: Generics

cifically support generic types; the second (and much more powerful) is to
define generic classes with constraints on the types you can use.

I'll focus on the first part in this section and constraints in the next section.
As I mentioned, there is brand new function and two classic ones that have
been specifically modified to work on the parametric type (T) of generic type
definition:

● Default (T) is a brand new function that returns the empty or
“zero value” or null value for the current type73; this can be zero, an
empty string, nil, and so on;

● TypeInfo (T) returns the pointer to the runtime information for
the current version of the generic type;

● SizeOf (T) returns memory size of the type in bytes (which in case
of a reference type like a string or an object would be the size of the
reference, that is 4 bytes).

The GenericTypeFunc example has a generic class showing the three generic
type functions in action:
type
 TSampleClass <T> = class
 private
 data: T;
 public
 procedure Zero;
 function GetDataSize: Integer;
 function GetDataName: string;
 end;

function TSampleClass<T>.GetDataSize: Integer;
begin
 Result := SizeOf (T);
end;

function TSampleClass<T>.GetDataName: string;
begin
 Result := GetTypeName (TypeInfo (T));
end;

procedure TSampleClass<T>.Zero;
begin

73 This zero-initialized memory has the same value of a global variable of the same type.
Differently from local variables, in fact, global ones are initialized to “zero” by the
compiler.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 147

 data := Default (T);
end;

In the GetDataName method I used the GetTypeName function (or the Typ-
Info unit) rather than directly accessing the data structure because it
performs the proper UTF-8 conversion from the encoded ShortString value
holding the type name.

Given the declaration above, you can compile the following test code, that
repeats itself three times on three different generic type instances. I've omit-
ted the repeated code, but show the statements used to access the data
field, as they change depending on the actual type:
var
 t1: TSampleClass<Integer>;
 t2: TSampleClass<string>;
 t3: TSampleClass<double>;
begin
 t1 := TSampleClass<Integer>.Create;
 t1.Zero;
 Log ('TSampleClass<Integer>');
 Log ('data: ' + IntToStr (t1.data));
 Log ('type: ' + t1.GetDataName);
 Log ('size: ' + IntToStr (t1.GetDataSize));

 t2 := TSampleClass<string>.Create;
 ...
 Log ('data: ' + t2.data);

 t3 := TSampleClass<double>.Create;
 ...
 Log ('data: ' + FloatToStr (t3.data));

Running this code (from the GenericTypeFunc program) produces the fol-
lowing output:
TSampleClass<Integer>
data: 0
type: Integer
size: 4
TSampleClass<string>
data:
type: string
size: 4
TSampleClass<double>
data: 0
type: Double
size: 8

Marco Cantù, Delphi 2009 Handbook

148 - Chapter 5: Generics

Notice that you can use the generic type functions also on specific types,
outside of the context of generic classes. For example, you can write:
var
 I: Integer;
 s: string;
begin
 I := Default (Integer);
 Log ('Default Integer': + IntToStr (I));

 s := Default (string);
 Log ('Default String': + s);

 Log ('TypeInfo String': +
 GetTypeName (TypeInfo (string));

While the calls to Default are brand new in Delphi 2009 (although not ter-
ribly useful outside of generics), the call to TypeInfo74 at the end was
already possible in past versions of Delphi. This is the trivial output:
Default Integer: 0
Default String:
TypeInfo String: string

Generic Constraints
As we have seen, there is very little you can do in the methods of your gen-
eric class over the generic type value. You can pass it around (that is, assign
it) and perform the limited operations allowed by the generic type functions
I've just covered.

To be able to perform some actual operations of the generic type of class,
you generally place a constraint on it. For example, if you limit the generic
type to be a class, the compiler will let you call all of the TObject methods
on it. You can also further constrain the class to be part of a given hierarchy
or to implement a specific interface, making it possible to call the class or
interface method on an instance of the generic type.

74 You cannot apply the TypeInfo call to a variable, like TypeInfo(s) in the code
above, but only to a type.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 149

Class Constraints
The simplest constraint you can adopt is a class constraint. To use it, you
can declare generic type as:
type
 TSampleClass <T: class> = class

By specifying a class constraint you indicate that you can use only object
types as generic types. With the following declaration (taken from the
ClassContraint project):
type
 TSampleClass <T: class> = class
 private
 data: T;
 public
 procedure One;
 function ReadT: T;
 procedure SetT (t: T);
 end;

you can create the first two instances but not the third:
 sample1: TSampleClass<TButton>;
 sample2: TSampleClass<TStrings>;
 sample3: TSampleClass<Integer>; // Error

The compiler error caused by this last declaration would be:
E2511 Type parameter 'T' must be a class type

What's the advantage of indicating this constraint? In the generic class
methods you can now call any TObject method, including virtual ones! This
is the One method of the TSampleClass generic class75:
procedure TSampleClass<T>.One;
begin
 if Assigned (data) then
 begin
 Form30.Log('ClassName: ' + data.ClassName);
 Form30.Log('Size: ' + IntToStr (data.InstanceSize));
 Form30.Log('ToString: ' + data.ToString);
 end;

75 Two comments here. The first is that InstanceSize returns the actual size of the
object, unlike the generic SizeOf function we used earlier, which returns the size of
the reference type. Second, the ToString method is a new (relevant) Delphi 2009
method of TObject that I'll cover in details in Chapter 7, in the section “TObjects's
New Methods”.

Marco Cantù, Delphi 2009 Handbook

150 - Chapter 5: Generics

end;

You can play with the program to see its actual effect, as it defines and uses
a few instances of the generic type, as in the following code snippet:
var
 sample1: TSampleClass<TButton>;
begin
 sample1 := TSampleClass<TButton>.Create;
 try
 sample1.SetT (Sender as TButton);
 sample1.One;
 finally
 sample1.Free;
 end;

Notice that by declaring a class with a customized ToString method, this
custom version will get called when the data object is of the specific type,
regardless of the actual type provided to the generic type. In other words, if
you have a TButton descendant like:
type
 TMyButton = class (TButton)
 public
 function ToString: string; override;
 end;

You can pass this object as value of a TSampleClass<TButton> or define a
specific instance of the generic type, and in both cases calling One ends up
executing the specific version of ToString:
var
 sample1: TSampleClass<TButton>;
 sample2: TSampleClass<TMyButton>;
 mb: TMyButton;
begin
 ...
 sample1.SetT (mb);
 sample1.One;
 sample2.SetT (mb);
 sample2.One;

Similarly to a class constraint, you can have a record constraint, declared as:
type
 TSampleRec <T: record> = class

However, there is very little that different records have in common (there is
no common ancestor), so this declaration is somewhat limited.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 151

Specific Class Constraints
If your generic class needs to work with a specific subset of classes (a spe-
cific hierarchy), you might want to resort to specifying a constraint based on
a given base class. For example, if you declare:
type
 TCompClass <T: TComponent> = class

instances of this generic class can be applied only to component classes, that
is, any TComponent descendant class. This let's you have a very specific gen-
eric type (yes, it sounds odd, but that's what it really is) and the compiler
will let you use all of the methods of the TComponent class while working on
the generic type.

If this seems extremely powerful, think twice. If you consider what you can
achieve with inheritance and type compatibly rules, you might be able to
address the same problem using traditional object-oriented techniques
rather than having to use generic classes. I'm not saying that a specific class
constraint is never useful, but it is certainly not as powerful as a higher-level
class constraint or (something I find very interesting) an interface-based
constraint.

Interface Constraints
Rather than constraining a generic class to a given class, it is generally more
flexible to accept as type parameter only classes implementing a given inter-
face. This makes it possible to call the interface on instances of the generic
type. This use of interface constraints for generics is also very common in
the .NET framework. Let me start by showing you an example (called Intf-
Constraint). First, we need to declare an interface:
type
 IGetValue = interface
 ['{60700EC4-2CDA-4CD1-A1A2-07973D9D2444}']
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 property Value: Integer
 read GetValue write SetValue;
 end;

Next, we can define a class implementing it:
type

Marco Cantù, Delphi 2009 Handbook

152 - Chapter 5: Generics

 TGetValue = class (TSingletonImplementation, IGetValue)
 private
 fValue: Integer;
 public
 constructor Create (Value: Integer = 0);
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 end;

Things start to get interesting in the definition of a generic class limited to
types that implement the given interface:
type
 TInftClass <T: IGetValue> = class
 private
 val1, val2: T; // or IGetValue
 public
 procedure Set1 (val: T);
 procedure Set2 (val: T);
 function GetMin: Integer;
 function GetAverage: Integer;
 procedure IncreaseByTen;
 end;

Notice that in the code of the generic methods of this class we can write, for
example:
function TInftClass<T>.GetMin: Integer;
begin
 Result := min (val1.GetValue, val2.GetValue);
end;

procedure TInftClass<T>.IncreaseByTen;
begin
 val1.SetValue (val1.GetValue + 10);
 val2.Value := val2.Value + 10;
end;

With all these definitions, we can now use the generic class as follows:
procedure TFormIntfConstraint.btnValueClick(
 Sender: TObject);
var
 iClass: TInftClass<TGetValue>;
begin
 iClass := TInftClass<TGetValue>.Create;
 try
 iClass.Set1 (TGetValue.Create (5));
 iClass.Set2 (TGetValue.Create (25));
 Log ('Average: ' + IntToStr (iClass.GetAverage));
 iClass.IncreaseByTen;
 Log ('Min: ' + IntToStr (iClass.GetMin));

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 153

 finally
 iClass.val1.Free;
 iClass.val2.Free;
 iClass.Free;
 end;
end;

To show the flexibility of this generic class, I've created another totally dif-
ferent implementation for the interface:
 TButtonValue = class (TButton, IGetValue)
 public
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 class function MakeTButtonValue (Owner: TComponent;
 Parent: TWinControl): TButtonValue;
 end;

function TButtonValue.GetValue: Integer;
begin
 Result := Left;
end;

procedure TButtonValue.SetValue(Value: Integer);
begin
 Left := Value;
end;

The class function (not listed in the book) creates a button within a Parent
control in a random position and is used in the following sample code:
procedure TFormIntfConstraint.btnValueButtonClick(
 Sender: TObject);
var
 iClass: TInftClass<TButtonValue>;
begin
 iClass := TInftClass<TButtonValue>.Create;
 try
 iClass.Set1 (TButtonValue.MakeTButtonValue (
 self, ScrollBox1));
 iClass.Set2 (TButtonValue.MakeTButtonValue (
 self, ScrollBox1));
 Log ('Average: ' + IntToStr (iClass.GetAverage));
 Log ('Min: ' + IntToStr (iClass.GetMin));
 iClass.IncreaseByTen;
 Log ('New Average: ' + IntToStr (iClass.GetAverage));
 finally
 iClass.Free;
 end;
end;

Marco Cantù, Delphi 2009 Handbook

154 - Chapter 5: Generics

Interface References vs. Generic
Interface Constraints

In the last example I have defined a generic class that works with any object
implementing a given interface. I could have obtained a similar effect by
creating a standard (non-generic) class based on interface references. In
fact, I could have defined a class like (again part of the IntfConstraint pro-
ject):
type
 TPlainInftClass = class
 private
 val1, val2: IGetValue;
 public
 procedure Set1 (val: IGetValue);
 procedure Set2 (val: IGetValue);
 function GetMin: Integer;
 function GetAverage: Integer;
 procedure IncreaseByTen;
 end;

What is different between these two approaches? A first difference is that in
the class above you can pass two objects of different types to the setter
methods, provided their classes both implement the given interface, while in
the generic version you can pass only objects of the given type (to any given
instance of the generic class). So the generic version is more conservative
and strict in terms of type checking.

In my opinion, the key difference is that using the interface-based version
means having Delphi reference counting mechanism in action, while using
the generic version the class is dealing with plain objects of a given type and
reference counting is not involved. Moreover, the generic version could have
multiple constraints, like a constructor constraint and let's you use the vari-
ous generic-functions (like asking for the actual type of the generic type),
something you cannot do when using an interface. (When you are working
with an interface, in fact, you have no access to the base TObject methods).

In other words, using a generic class with an interface constraint makes it
possible to have the benefits of interfaces without their nuisances. Still, it is
worth noticing that in most cases the two approaches would be equivalent,
and in others the interface-based solution would be more flexible.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 155

Default Constructor Constraint
There is another possible generic type constraint, called default constructor
or parameterless constructor. If you need to invoke the default constructor
to create new object of the generic type (for example for filling a list) you can
use this constraint. In theory (and according to the documentation), the
compiler should let you use it only for those types with a default constructor.
In practice, if a default constructor doesn't exists, the compiler will let it go
and call the default constructor of TObject.

A generic class with a constructor constraint can be written as follows76 (this
one is extracted by the IntfConstraint example):
type
 TConstrClass <T: class, constructor> = class
 private
 val: T;
 public
 constructor Create;
 function Get: T;
 end;

Given this declaration, you can use the constructor to create a generic
internal object, without knowing its actual type up front, and write:
constructor TConstrClass<T>.Create;
begin
 val := T.Create;
end;

How can we use this generic class and what are the actual rules? In the next
example I have defined two classes, one with a default (parameterless) con-
structor, the second with a single constructor having one parameter:
type
 TSimpleConst = class
 public
 Value: Integer;
 constructor Create; // set Value to 10
 end;

 TParamConst = class
 public

76 You can also specify the constructor constraint without the class constraint, as the
former probably implies the latter. Listing both of them makes the code more read-
able.

Marco Cantù, Delphi 2009 Handbook

156 - Chapter 5: Generics

 Value: Integer;
 constructor Create (I: Integer); // set Value to I
 end;

As I mentioned earlier, in theory you should be able to use only the first
class, while in practice you can use both:
var
 constructObj: TConstrClass<TSimpleCost>;
 paramCostObj: TConstrClass<TParamCost>;
begin
 constructObj := TConstrClass<TSimpleCost>.Create;
 Log ('Value 1: ' + IntToStr (constructObj.Get.Value));

 paramCostObj := TConstrClass<TParamCost>.Create;
 Log ('Value 2: ' + IntToStr (paramCostObj.Get.Value));

The output of this code is:
Value 1: 10
Value 2: 0

In fact, the second object is never initialized. If you debug the application
trace into the code you'll see a call to TObject.Create (which I consider
wrong). Notice that if you try calling directly:
 with TParamConst.Create do

the compiler will (correctly) raise the error77:
[DCC Error] E2035 Not enough actual parameters

Generic Constraints Summary and
Combining Them

As there are so many different constraints you can put on a generic type, let
me provide a short summary here, in code terms:
type
 TSampleClass <T: class> = class
 TSampleRec <T: record> = class
 TCompClass <T: TButton> = class
 TInftClass <T: IGetValue> = class
 TConstrClass <T: constructor> = class

77 Even if a direct call to TParamConst.Create will fail at compile time (as explained
here), a similar call using a class reference or any other form of indirection will suc-
ceed, which probably explains the behavior of the effect of the constructor constraint.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 157

What you might not immediately realize after looking at constraints (and
this certainly took me some time to get used to) is that you can combine
them. For example, you can define a generic class limited to a sub-hierarchy
and requiring also a given interface, like in:
type
 TInftComp <T: TComponent, IGetValue> = class
 ...
 end;

Not all combinations make sense: for example you cannot specify both a
class and a record, while using a class constraint combined with a specific
class constraint would be redundant. Finally, notice that there is nothing
like a method constraint, something that can be achieved with a single-
method interface constraint (much more complex to express, though).

Predefined Generic Containers
Since the early days of templates in the C++ Language, one of the most obvi-
ous uses of generic classes has been the definition of generic containers or
lists. When you define a list of objects, like Delphi's own TObjectList, in
fact, you have a list that can potentially hold objects of any kind. Using
either inheritance or composition you can indeed define custom containers
for specific a type, but this is a tedious (and potentially error-prone)
approach78.

Delphi 2009 defines a small set of generic container classes you can find in
the new Generics.Collections unit. The four core container classes are all
implemented in an independent way (the is no inheritance among these
classes), all implemented in a similar fashion (using a dynamic array), and
are all mapped to the corresponding non-generic container class of the Con-
tnrs unit:
type
 TList<T> = class
 TQueue<T> = class

78 Here I don't want to cover the difference between the various approaches you could
use in Delphi to define specialized container before generics were available, because
we do have generics now. You can find material along these lines in my Mastering
Delphi 7 book (Sybex) and other editions of that series.

Marco Cantù, Delphi 2009 Handbook

158 - Chapter 5: Generics

 TStack<T> = class
 TDictionary<TKey,TValue> = class

The logical difference among these classes should be quite obvious consider-
ing their names. A good way to test them, is to figure out how many changes
you have to perform on existing code that uses a non-generic container
class. As an example, I've taken an actual sample program of the Mastering
Delphi 2005 book and converted it to use generics79.

Using TList<T>
The program, called ListDemoMd2005, has a unit defining a TDate class,
and the main form used to refer to a TList of dates. As a starting point, I
added a uses clause referring to Generics.Collections, then I changed the
declaration of the main form field to:
 private
 ListDate: TList <TDate>;

Of course, the main form OnCreate event handler that does create the list
needed to be updated as well, becoming:
procedure TForm1.FormCreate(Sender: TObject);
begin
 ListDate := TList<TDate>.Create;
end;

Now we can try to compile the rest of the code as it is. The program has a
“wanted” bug, trying to add a TButton object to the list. The corresponding
code used to compile and now fails:
procedure TForm1.ButtonWrongClick(Sender: TObject);
begin
 // add a button to the list
 ListDate.Add (Sender); // Error:
 // E2010 Incompatible types: 'TDate' and 'TObject'
end;

The new list of dates is more robust in terms of type-checking than the ori-
ginal generic list pointers. Having removed that line, the program compiles
and works. Still, it can be improved.

79 The program uses only a few methods, so it is not a great test for interface compatib-
ility between generic and non-generic lists, but I decided it was worth taking an exist-
ing program rather than fabricating one.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 159

This is the original code used to display all of the dates of the list in a List-
Box control:
var
 I: Integer;
begin
 ListBox1.Clear;
 for I := 0 to ListDate.Count - 1 do
 Listbox1.Items.Add (
 (TObject(ListDate [I]) as TDate).Text);

Notice the rather ugly type cast, due to the fact that the program was using a
list of pointers (TList), and not a list of objects (TObjectList). The reason
might well be that the original demo predates the TObjectList class! We
can easily improve the program by writing:
 for I := 0 to ListDate.Count - 1 do
 Listbox1.Items.Add (ListDate [I].Text);

Another improvement to this snippet can come from using an enumeration
(something the predefined generic lists fully support) rather than a plain
for loop:
var
 aDate: TDate;
begin
 for aDate in ListDate do
 begin
 Listbox1.Items.Add (aDate.Text);
 end;

Finally, the program can be improved by using a generic TObjectList
owning the TDate objects, but that's a topic for the next section.

As I mentioned earlier, the TList<T> generic class has a high degree of
compatibility. There are all the classic methods, like Add, Insert, Remove,
and IndexOf. The Capacity and Count properties are there as well. Oddly,
Items become Item, but being the default property you seldom explicitly
refer to it anyway.

Sorting a TList<T>
What is interesting to understand is how sorting works (my goal here is to
add sorting support to the ListDemoMd2005 example). The Sort method is
defined as:
procedure Sort; overload;

Marco Cantù, Delphi 2009 Handbook

160 - Chapter 5: Generics

procedure Sort(const AComparer: IComparer<T>); overload;

where the IComparer<T> interface is declared in the Generics.Defaults
unit. If you call the first version the program will use the default comparer,
initialized by the default constructor of TList<T>. In our case this will be
useless.

What we need to do, instead is to define a proper implementation of the
IComparer<T> interface. For type compatibility, we need to define an
implementation that works on the specific TDate class. There are multiple
ways to accomplish this, including using anonymous methods (covered in
the next section even if that's a topic introduced in the next chapter). An
interesting technique, also because it gives me the opportunity to show sev-
eral usage patterns of generics, is to take advantage of a structural80 class
that is part of the unit Generics.Defaults and is called TComparer. The class
is defined as an abstract and generic implementation of the interface, as fol-
lows:
type
 TComparer<T> = class(TInterfacedObject, IComparer<T>)
 public
 class function Default: IComparer<T>;
 class function Construct(
 const Comparison: TComparison<T>): IComparer<T>;
 function Compare(
 const Left, Right: T): Integer; virtual; abstract;
 end;

What we have to do is instantiate this generic class for the specific data type
(TDate, in the example) and also inherit a concrete class that implements
the Compare method for the specific type. The two operations can be done at
once, using a coding idiom that may take a while to digest:
type
 TDateComparer = class (TComparer<TDate>)
 function Compare(
 const Left, Right: TDate): Integer; override;
 end;

80 I'm calling this class structural because it helps defining the structure of the code, but
doesn't add a lot in terms of actual implementation. There might be a better name,
though.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 161

If you think this code looks very unusual, you're not alone. The new class
inherits from a specific instance of the generic class, something you could
express in two separate steps81 as:
type
 TAnyDateComparer = TComparer<TDate>;
 TMyDateComparer = class (TAnyDateComparer)
 function Compare(
 const Left, Right: TDate): Integer; override;
 end;

You can find the actual implementation of the Compare function in the
source code, as that's not the key point I want to stress here. Keep in mind,
though, that even if you sort the list its IndexOf method won't take advant-
age of it (unlike the TStringList class).

Sorting with an Anonymous Method
The sorting code presented in the previous section looks quite complicated
and it really is. It would be much easier and cleaner to pass the sorting func-
tion to the Sort method directly. In the past this was generally achieved by
passing a function pointer. In Delphi 2009 this can be done by passing an
anonymous method (a kind of method pointer, with several extra features,
covered in detail in the next chapter82).

The IComparer<T> parameter of the Sort method of the TList<T> class,
in fact, can be used by calling the Construct method of TComparer<T>,
passing an anonymous method as a parameter defined as:
type
 TComparison<T> = reference to function(
 const Left, Right: T): Integer;

In practice you can write a type-compatible function and pass it as para-
meter83:
function DoCompare (const Left, Right: TDate): Integer;
var
 ldate, rDate: TDateTime;
begin

81 Having the two separate declarations might help reducing the generated code where
you are reusing the base TAnyDateComparer type in the same unit.

82 I suggest you have a look at this section even if you don't know much about anonym-
ous methods, and then read it again after delving into the next chapter.

Marco Cantù, Delphi 2009 Handbook

162 - Chapter 5: Generics

 lDate := EncodeDate(Left.Year, Left.Month, Left.Day);
 rDate := EncodeDate(Right.Year, Right.Month, Right.Day);
 if lDate = rDate then
 Result := 0
 else if lDate < rDate then
 Result := -1
 else
 Result := 1;
end;

procedure TForm1.ButtonAnonSortClick(Sender: TObject);
begin
 ListDate.Sort (TComparer<TDate>.Construct (DoCompare));
end;

If this looks quite traditional, consider you could have avoided the declara-
tion of a separate function and pass it (its source code) as parameter to the
Construct method, as follows:
procedure TForm1.ButtonAnonSortClick(Sender: TObject);
begin
 ListDate.Sort (TComparer<TDate>.Construct (
 function (const Left, Right: TDate): Integer
 var
 ldate, rDate: TDateTime;
 begin
 lDate := EncodeDate(Left.Year,
 Left.Month, Left.Day);
 rDate := EncodeDate(Right.Year,
 Right.Month, Right.Day);
 if lDate = rDate then
 Result := 0
 else if lDate < rDate then
 Result := -1
 else
 Result := 1;
 end));
end;

This example should have wet your appetite for learning more about
anonymous methods! For sure, this last version is much simpler to write
than the original comparison covered in the previous section, although for

83 The DoCompare method above works like an anonymous methods even if it does
have a name. We'll see in a later code snippet that this is not required, though. Have
patience until the next chapter for more information about this new Delphi 2009 lan-
guage construct. Notice also that with a TDate record I could have defined less than
and greater then operators, making this code simpler, but even with a class I could
have placed the comparison code in a method of the class.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 163

many Delphi developers having a derived class might look cleaner and be
easier to understand (the inherited version separates the logic better, mak-
ing potential code reuse easier, but many times you won't make use of it
anyway).

Object Containers
Beside the generic classes covered at the beginning of this section, there are
also four inherited generic classes that are derived from the base classes
defined in the Generics.Collections unit, mimicking existing classes of the
Contnrs unit:
type
 TObjectList<T: class> = class(TList<T>)
 TObjectQueue<T: class> = class(TQueue<T>)
 TObjectStack<T: class> = class(TStack<T>)

Compared to their base classes, there are two key differences. One is that
these generic types can be used only for objects; the second is that they
define a customized Notification method, that in the case when an object
is removed from the list (beside optionally calling the OnNotify event
handler) will Free the object.

In other words, the TObjectList<T> class behaves like its non-generic
counterpart when the OwnsObjects property is set. If you are wondering
why this is not an option any more, consider that TList<T> can now be
used directly to work with object types, unlike its non-generic counterpart.

There is also a fourth class, again, called TObjectDictionary<TKey,
TValue>, which is defined in a different way, as it can own the key object,
the value objects, or both of them. See the TDictionaryOwnerships set
and the class constructor for more details.

Marco Cantù, Delphi 2009 Handbook

164 - Chapter 5: Generics

Using a Generic Dictionary
Of all the predefined generic container classes, the one probably worth more
detailed study is the generic dictionary84, TObjectDictionary<TKey,
TValue>. Other classes are just as important, but they seem to be easier to
use and understand. As an example of using a dictionary, I've written an
application that fetches data from a database table, creates an object for
each record, and uses a composite index with an customer ID and a descrip-
tion as key. The reason for this separation is that a similar architecture can
easily be used to create a proxy, in which the key takes the place of a light
version of the actual object loaded from the database.

These are the two classes used by the CustomerDictionary example for the
key and the actual value. The first has only two relevant fields of the corres-
ponding database table, while the second has the complete data structure
(I've omitted the private fields, getter methods, and setter methods):
type
 TCustomerKey = class
 private
 ...
 published
 property CustNo: Double
 read FCustNo write SetCustNo;
 property Company: string
 read FCompany write SetCompany;
 end;

 TCustomer = class
 private
 ..
 procedure Init;
 procedure EnforceInit;
 public
 constructor Create (aCustKey: TCustomerKey);
 property CustKey: TCustomerKey
 read FCustKey write SetCustKey;
 published
 property CustNo: Double
 read GetCustNo write SetCustNo;
 property Company: string

84 Dictionary in this case means a collection of elements each with a (unique) key value
referring to it. (It is also known as an associative array.) In a classic dictionary you
have words acting as keys for their definitions, but in programming terms the key
doesn't have to be a string (even if this is a rather frequent case).

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 165

 read GetCompany write SetCompany;
 property Addr1: string
 read GetAddr1 write SetAddr1;
 property City: string
 read GetCity write SetCity;
 property State: string
 read GetState write SetState;
 property Zip: string
 read GetZip write SetZip;
 property Country: string
 read GetCountry write SetCountry;
 property Phone: string
 read GetPhone write SetPhone;
 property FAX: string
 read GetFAX write SetFAX;
 property Contact: string
 read GetContact write SetContact;
 class var
 RefDataSet: TDataSet;
 end;

While the first class is very simple (each object is initialized when it is cre-
ated), the TCustomer class uses a lazy initialization (or proxy) model and
keeps around a reference to the source database shared (class var) by all
objects. When an object is created it is assigned a reference to the corres-
ponding TCustomerKey, while a class data field refers to the source dataset.
In each getter method, the class checks if the object has indeed been initial-
ized before returning the data, as in the following case:
function TCustomer.GetCompany: string;
begin
 EnforceInit;
 Result := FCompany;
end;

The EnforceInit method checks a local flag, eventually calling Init to
load data from the database to the in-memory object:
procedure TCustomer.EnforceInit;
begin
 if not fInitDone then
 Init;
end;

procedure TCustomer.Init;
begin
 RefDataSet.Locate('custno', CustKey.CustNo, []);

 // could also load each published field via RTTI

Marco Cantù, Delphi 2009 Handbook

166 - Chapter 5: Generics

 FCustNo := RefDataSet.FieldByName ('CustNo').AsFloat;
 FCompany := RefDataSet.FieldByName ('Company').AsString;
 FCountry := RefDataSet.FieldByName ('Country').AsString;
 ...
 fInitDone := True;
end;

Given these two classes, I've added a special purpose dictionary to the
application. This custom dictionary class inherits from a generic class
instantiated with the proper types and adds to it a specific method:
type
 TCustomerDictionary = class (
 TObjectDictionary <TCustomerKey, TCustomer>)
 public
 procedure LoadFromDataSet (dataset: TDataSet);
 end;

The loading method populates the dictionary, copying data in memory for
only the key objects:
procedure TCustomerDictionary.LoadFromDataSet(
 dataset: TDataSet);
var
 custKey: TCustomerKey;
begin
 TCustomer.RefDataSet := dataset;
 dataset.First;
 while not dataset.EOF do
 begin
 custKey := TCustomerKey.Create;
 custKey.CustNo := dataset ['CustNo'];
 custKey.Company := dataset ['Company'];
 self.Add(custKey, TCustomer.Create (custKey));
 dataset.Next;
 end;
end;

The demo program has a main form and a data module hosting a Client-
DataSet85. The main form has a ListView control that is filled when a user
presses the only button.

After loading the data in the dictionary, the btnPopulateClick method
uses an enumerator on the dictionary's keys:

85 You might want to replace the ClientDataSet component with a real dataset, expand-
ing the example considerably in terms of usefulness, as you could run a query for the
keys and a separate one for the actual data of each single TCustomer object. I have
similar code, but adding it here would have distracted us too much from the goal of
the example, which is experimenting with a generic dictionary class.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 167

procedure TFormCustomerDictionary.btnPopulateClick(
 Sender: TObject);
var
 custkey: TCustomerKey;
 listItem: TListItem;
begin
 DataModule1.ClientDataSet1.Active := True;
 CustDict.LoadFromDataSet(DataModule1.ClientDataSet1);

 for custkey in CustDict.Keys do
 begin
 listItem := ListView1.Items.Add;
 listItem.Caption := custkey.Company;
 listItem.SubItems.Add(FloatTOStr (custkey.CustNo));
 listItem.Data := custkey;
 end;
end;

This fills the first two columns of the ListView control, with the data avail-
able in the key objects. Whenever a user selects an item of the ListView
control, though, the program will fill a third column:
procedure TFormCustomerDictionary.ListView1SelectItem(
 Sender: TObject; Item: TListItem; Selected: Boolean);
var
 aCustomer: TCustomer;
begin
 aCustomer := CustDict.Items [Item.data];
 Item.SubItems.Add(IfThen (aCustomer.State <> '',
 aCustomer.State + ', ' + aCustomer.Country,
 aCustomer.Country));
end;

The method above gets the object mapped to the given key, and uses its
data. Behind the scenes, the first time a specific object is used, the property
access method triggers the loading of the entire data for the TCustomer
object.

Generic Interfaces
In the section “Sorting a TList<T>” you might have noticed a rather strange
of use of a predefined interface, which had a generic declaration. It is worth
looking into this technique in detail, as it opens up significant opportunities
and changes (even if modestly) the way interfaces work in the language.

Marco Cantù, Delphi 2009 Handbook

168 - Chapter 5: Generics

The first technical element to notice is that it is perfectly legal to define a
generic interface86, like I've done in the GenericInterface example:
type
 IGetValue<T> = interface
 function GetValue: T;
 procedure SetValue (Value: T);
 end;

Notice that differently from a standard interface, in case of a generic inter-
face you don't need to specify a GUID to be used as Interface ID (or IID).
The compiler will generate an IID for you for each instance of the generic
interface, even if implicitly declared. In fact, you don't have to create a spe-
cific instance of the generic interface to implement it, but can define a
generic class that implements the generic interface:
type
 TGetValue<T> = class (TInterfacedObject, IGetValue<T>)
 private
 fValue: T;
 public
 constructor Create (Value: T);
 destructor Destroy; override;
 function GetValue: T;
 procedure SetValue (Value: T);
 end;

While the constructor assigns the initial value of the object, the destructor's
only purpose is to log that an object was destroyed. We can create an
instance of this generic class (thus generating a specific instance of the
interface type behind the scenes) by writing:
procedure TFormGenericInterface.btnValueClick(
 Sender: TObject);
var
 aVal: TGetValue<string>;
begin
 aVal := TGetValue<string>.Create (Caption);
 try
 Log ('TGetValue value: ' + aVal.GetValue);
 finally
 aVal.Free;
 end;
end;

86 This is the generic version of the IGetValue interface of the IntfContraints example,
covered in the earlier section “Interface Constraints” of this chapter. In that case the
interface had an Integer value, now it has a generic one.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 169

An alternative approach, as we saw in the past for the IntfConstraint
example, is to use an interface variable of the corresponding type, making
the specific interface type definition explicit (and not implicit as in the pre-
vious code snippet):
procedure TFormGenericInterface.btnIValueClick(
 Sender: TObject);
var
 aVal: IGetValue<string>;
begin
 aVal := TGetValue<string>.Create (Caption);
 Log ('IGetValue value: ' + aVal.GetValue);
 // freed automatically, as it is reference counted
end;

Of course, we can also define a specific class that implements the generic
interface, as in the following scenario (from the GenericInterface example):
type
 TButtonValue = class (TButton, IGetValue<Integer>)
 public
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 class function MakeTButtonValue (Owner: TComponent;
 Parent: TWinControl): TButtonValue;
 end;

Notice that while the TGetValue<T> generic class implements the generic
IGetValue<T> interface, the TButtonValue specific class implements the
IGetValue<Integer> specific interface. Specifically, as in a previous
example, the interface is remapped to the Left property of the control:
function TButtonValue.GetValue: Integer;
begin
 Result := Left;
end;

In the class above, the MakeTButtonValue class function is a ready-to-use
method to create an object of the class. This method is used by the third but-
ton of the main form, as follows:
procedure TFormGenericInterface.btnValueButtonClick(
 Sender: TObject);
var
 iVal: IGetValue<Integer>;
begin
 iVal := TButtonValue.MakeTButtonValue (
 self, ScrollBox1);
 Log ('Button value: ' + IntToStr (iVal.GetValue));
end;

Marco Cantù, Delphi 2009 Handbook

170 - Chapter 5: Generics

Although this is totally unrelated with generic classes, here is the imple-
mentation of the MakeTButtonValue class function:
class function TButtonValue.MakeTButtonValue(
 Owner: TComponent; Parent: TWinControl): TButtonValue;
begin
 Result := TButtonValue.Create(Owner);
 Result.Parent := Parent;
 Result.SetBounds(Random (Parent.Width),
 Random (Parent.Height), Result.Width, Result.Height);
 Result.Caption := 'btnv';
end;

Predefined Generic Interfaces
Now that we have explored how to define generic interfaces and combine
them with the use of generic and specific classes, we can get back to having a
second look to the Generics.Default unit. This unit defines two generic com-
parison interfaces:

● IComparer<T> has a Compare method

● IEqualityComparer<T> has Equals and GetHashCode methods

These classes are implemented by some generic and specific classes, listed
below (with no implementation details):
type
 TComparer<T> = class(TInterfacedObject, IComparer<T>)
 TEqualityComparer<T> = class(
 TInterfacedObject, IEqualityComparer<T>)
 TCustomComparer<T> = class(TSingletonImplementation,
 IComparer<T>, IEqualityComparer<T>)
 TStringComparer = class(TCustomComparer<string>)

In the listing above you can see that the base class used by the generic
implementations of the interfaces is either the classic reference-counted
TInterfacedObject class or the new TSingletonImplementation class.
This is an oddly named87 class that provides a basic implementation of
IInterface with no reference counting.

As we have already seen in the “Sorting a TList<T>” section earlier in this
chapter, these comparison classes are used by the generic containers. To

87 The term singleton is generally used to define a class of which you can create only one
instance, and not one with no reference counting. I consider this quite a misnomer.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 171

make things more complicated, though, the Generics.Default unit relies
quite heavily on anonymous methods, so you should probably look at it only
after reading the next chapter.

Smart Pointers in Delphi
When approaching generics, you might get the wrong first impression that
this language construct is mostly used for collections. While this is the
simplest case for using generic classes, and very often the first example in
books and docs, generics are useful well beyond the realm of collection (or
container) classes. In the last example of this chapter I'm going to show you
a non-collection generic type, that is the definition of a smart pointer.

If you come from a Delphi background, you might not have heard of smart
pointers, an idea that comes from the C++ language. In C++ you can have
pointers to objects, for which you have to manage memory directly and
manually, and local object variables that are managed automatically but
have many other limitation (including the lack of polymorphism88). The idea
of a smart pointers is to use a locally managed object to take care of the life-
time of the pointer to the real object you want to use. If this sounds too
complicated, I hope the Delphi version (and its code) will help clarify it.

In Delphi objects are managed by reference, but records have a lifetime
bound to the method in which they are declared. When the method ends,
the memory area for the record is cleaned up. So what we can do is to use a
record to manage the lifetime of a Delphi object. Of course, we want to write
the code only once, so we can use a generic record. Here is a first version:
type
 TSmartPointer<T: class> = record
 strict private
 FValue: T;
 function GetValue: T;
 public
 constructor Create(AValue: T);

88 The term polymorphisms in OOP languages is used to denote the situation in which
you assign to a variable of a base class an object of a derived class and call one of the
base class virtual methods, potentially ending up calling the version of the virtual
method of the specific subclass.

Marco Cantù, Delphi 2009 Handbook

172 - Chapter 5: Generics

 property Value: T read GetValue;
 end;

The Create and GetValue methods of the record could simply assign and
read back the value. Using this code you can create an object, create a smart
pointer wrapping it, and refer from one to the other:
var
 sl: TStringList;
 smartP: TSmartPointer<TStringList>;
begin
 sl := TStringList.Create;
 smartP.Create (sl);
 sl.Add('foo');
 smartP.Value.Add ('foo2');

As you may have worked out, this code causes a memory leak in the exact
same way as without the smart pointer! In fact the record is destroyed as it
goes out of scope, but it has no way of freeing the internal object. Consider-
ing a record has no destructor, how can we manage the object disposal? A
trick is to use an interface inside the record itself, as the record will auto-
matically free the interfaced object. Should we add an interface to the object
we are wrapping? Probably not, as this imposes a significant limitation on
the objects we'll be able to pass to the smart pointer.

A better alternative89 is probably to write a specific wrapper class, tied to an
interface, and use the interface reference counting mechanism to the
wrapped object. The internal class might look like the following:
type
 TFreeTheValue = class (TInterfacedObject)
 private
 fObjectToFree: TObject;
 public
 constructor Create(anObjectToFree: TObject);
 destructor Destroy; override;
 end;

constructor TFreeTheValue.Create(
 anObjectToFree: TObject);
begin

89 Barry Kelly (of the Delphi R&D team) implemented a similar architecture with a in-
terfaced class that uses an anonymous method to free the target object, but I haven't
covered anonymous methods yet and the code is more complicated anyway. His code
is at: http://barrkel.blogspot.com/2008/09/smart-pointers-in-delphi.html. An up-
dated version uses another anonymous method to simplify the access code:
http://barrkel.blogspot.com/2008/11/reference-counted-pointers-revisited.html.

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 173

 fObjectToFree := anObjectToFree;
end;

destructor TFreeTheValue.Destroy;
begin
 fObjectToFree.Free;
 inherited;
end;

Even better, in the actual example I've declared this as a nested type of the
generic smart pointer type. All we have to do in the smart pointer generic
type, to enable this feature, is to add an interface reference and initialize it
with a TFreeTheValue object referring to the contained object:
type
 TSmartPointer<T: class> = record
 strict private
 FValue: T;
 FFreeTheValue: IInterface;
 function GetValue: T;
 public
 constructor Create(AValue: T); overload;
 property Value: T read GetValue;
 end;

The pseudo-constructor (records don't have real constructors) becomes:
constructor TSmartPointer<T>.Create(AValue: T);
begin
 FValue := AValue;
 FFreeTheValue := TFreeTheValue.Create(FValue);
end;

With this code in place, we can now write the following code in a program
without causing a memory leak:
procedure TFormSmartPointers.btnSmartClick(
 Sender: TObject);
var
 sl: TStringList;
 smartP: TSmartPointer<TStringList>;
begin
 sl := TStringList.Create;
 smartP.Create (sl);
 sl.Add('foo');
 Log ('Count: ' + IntToStr (sl.Count));
end;

At the end of the method the smartP record is disposed, which causes its
internal interfaced object to be destroyed, freeing the TStringList object.

Marco Cantù, Delphi 2009 Handbook

174 - Chapter 5: Generics

Notice that this disposal takes place even when an exception is raised, so we
don't need to protect our code with a try-finally block90.

In the program, I verify that all objects are actually destroyed and there is no
memory leak by setting the global ReportMemoryLeaksOnShutdown to
True in the initialization code. As a counter test, there is a button in the pro-
gram that causes a leak, which is caught as the program terminates.

So using the smart pointer record we have been able to remove the need for
the Free call, and hence the need for a try-finally block, but there is still
quite some code to write (and to remember writing). An extension to the
smart pointer class is the inclusion of an Implicit conversion operator,
providing the capability to assign the target object to the smart pointer:
class operator TSmartPointer<T>.
 Implicit(AValue: T): TSmartPointer<T>;
begin
 Result := TSmartPointer<T>.Create(AValue);
end;

With this code (and taking advantage of the Value field) we can now write a
more compact version of the code, like:
var
 smartP: TSmartPointer<TStringList>;
begin
 smartP := TStringList.Create;
 smartP.Value.Add('foo');
 Log ('Count: ' + IntToStr (smartP.Value.Count));

As an alternative, we can use a TStringList variable and use a complicated
constructor to initialize the smart pointer record even without an explicit
reference to it:
var
 sl: TStringList;
begin
 sl := TSmartPointer<TStringList>.
 Create(TStringList.Create).Value;
 sl.Add('foo');
 Log ('Count: ' + IntToStr (sl.Count));

As we've started down this road, we can also define the opposite conversion,
and use the cast notation rather than the Value property:

90 In practice, implicit try-finally blocks are being added all over the places by the
compiler to handle the interface within the record, but we don't have to write them
(and the compiler is less likely to forget one).

Marco Cantù, Delphi 2009 Handbook

Chapter 5: Generics - 175

class operator TSmartPointer<T>.
 Implicit(AValue: T): TSmartPointer<T>;
begin
 Result := TSmartPointer<T>.Create(AValue);
end;

var
 smartP: TSmartPointer<TStringList>;
begin
 smartP := TStringList.Create;
 TStringList(smartP).Add('foo2');

Now, you might also notice that I've always used a pseudo-constructor in the
code above, but this is not needed on a record. All we need is a way to ini-
tialize the internal object, possibly calling its constructor, the first time we
use it. We cannot test if the internal object is Assigned, because records
(unlike classes) are not initialized to zero. However we can perform that test
on the interface variable, which is initialized.

The extra code of the smart pointer record type is an overloaded Create
procedure (it cannot be a constructor, as parameterless constructors are not
legal for records) and a lazy initialization of the Value property:
procedure TSmartPointer<T>.Create;
begin
 Create (T.Create);
end;

function TSmartPointer<T>.GetValue: T;
begin
 if not Assigned(FFreeTheValue) then
 Create;
 Result := FValue;
end;

With this code we have now many ways to use the smart pointer, including
not freeing and not even creating it explicitly:
var
 smartP: TSmartPointer<TStringList>;
begin
 smartP.Value.Add('foo');
 Log ('Count: ' + IntToStr (smartP.Value.Count));
end;

The fact that the method above creates a string list and frees it at the end
sounds certainly a big departure form the standard coding model Delphi
developers are used to. And this is only a specific case of using generics for
non collections code. To end this section, though. Let me list the complete

Marco Cantù, Delphi 2009 Handbook

176 - Chapter 5: Generics

source code of the smart pointer generic record I've build in several itera-
tions:
type
 TSmartPointer<T: class, constructor> = record
 strict private
 FValue: T;
 FFreeTheValue: IInterface;
 function GetValue: T;
 private
 type
 TFreeTheValue = class (TInterfacedObject)
 private
 fObjectToFree: TObject;
 public
 constructor Create(anObjectToFree: TObject);
 destructor Destroy; override;
 end;
 public
 constructor Create(AValue: T); overload;
 procedure Create; overload;
 class operator Implicit(AValue: T): TSmartPointer<T>;
 class operator Implicit(smart: TSmartPointer <T>): T;
 property Value: T read GetValue;
 end;

The complete code and some of the usage patterns mentioned in this section
are in the SmartPointers project.

What's Next
After covering the changes to the string type, in this chapter we've started
exploring another significant new feature of the compiler in Delphi 2009,
the support for generic types. Even if the chapter is quite long, we've just
started scratching the surface of what can be considered a new program-
ming paradigm for Delphi developers.

But there is more: anonymous methods, covered in the next chapter,
provide yet another paradigm shift, and can be used together with generics
as I've already anticipated in this chapter. They have a very useful role in
multi-threaded applications and many other cases, as you'll see in the next
chapter. Certainly Delphi 2009 is not a dull update for those who are, like
me, passionate for programming languages in general and the Object Pascal
language in particular.

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 177

Chapter 6:
Anonymous

Methods

The Delphi language has had procedural types (that is, types declaring
pointers to procedures and functions91) and method pointers (that is, types
declaring pointers to methods) for a long time. Although you might seldom
use them directly, these are key features of Delphi that every developer
works with. In fact, methods pointers types are the foundation for event
handlers in the VCL: every time you declare an event handler, even a pure

91 In case you want to learn more, procedural types are covered in Chapter 6 of Essen-
tial Pascal, 4th edition; method pointer types are describe in the books of my Master-
ing Delphi series.

Marco Cantù, Delphi 2009 Handbook

178 - Chapter 6: Anonymous Methods

Button1Click you are in fact declaring a method that will be connected to
an event (the OnClick event, in this case) using a method pointer.

Anonymous methods extend this feature by letting you pass the actual code
of a method as a parameter, rather than the name of a method defined else-
where. This is not the only difference, though. What makes anonymous
methods very different from other techniques is the way they manage the
lifetime of local variables.

The definition above matches with a feature called closures in many other
languages, for example JavaScript. If Delphi anonymous methods are in fact
closures, how come CodeGear refers to them using a different term? The
reason is that C++Builder has been using the term closures for what we in
Delphi call event handlers, so having a different feature with the same name
would have been confusing. Moreover, the C# language uses the term
anonymous methods for a similar mechanism as Delphi has, so it makes
sense to use a similar moniker.

If anonymous methods are a brand new feature for Delphi, they've been
around in different forms and with different names for many years in other
programming languages, most notably dynamic languages. I've had extens-
ive experience with closures in JavaScript, particularly with the jQuery92

libraries and AJAX calls. The corresponding feature in C# is called an
anonymous delegate.

But I don't want to devote time comparing closures and related techniques
in the various programming languages, but rather describe in detail how
they work in Delphi 2009.

Syntax and Semantic of
Anonymous Methods

An anonymous method in Delphi is a mechanism to create a method value
in an expression context93. A rather cryptic definition, but one encapsulating

92 More information about the jQuery JavaScript library at http://jQuery.org.

93 In the words of anonymous methods implementer Barry Kelly of CodeGear R&D,
http://barrkel.blogspot.com.

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 179

it with a lot of precision and underlining the key difference from method
pointers, the expression context. Before we get to this, though, let me start
from the beginning with a very simple code example (included in the
AnonymFirst project along with most others in this section).

This is the declaration of an anonymous method type, something you need
as Delphi is and remains a strongly typed language:
type
 TIntProc = reference to procedure (n: Integer);

This is different from a method reference type only in the keywords being
used for the declaration:
type
 TIntMethod = procedure (n: Integer) of object;

An Anonymous Method Variable
Once you have an anonymous method type you can, in the simplest cases,
declare a variable of this type, assign a type-compatible anonymous method,
and call the method through the variable:
procedure TFormAnonymFirst.btnSimpleVarClick(
 Sender: TObject);
var
 anIntProc: TIntProc;
begin
 anIntProc :=
 procedure (n: Integer)
 begin
 Memo1.Lines.Add (IntToStr (n));
 end;
 anIntProc (22);
end;

Notice the syntax used to assign an actual procedure, with in-place code, to
the variable. This is something never seen in Pascal in the past.

An Anonymous Method Parameter
As a more interesting example (with even more surprising syntax), we can
pass an anonymous method as parameter to a function. Suppose you have a
function taking an anonymous method parameter:

Marco Cantù, Delphi 2009 Handbook

180 - Chapter 6: Anonymous Methods

procedure CallTwice (value: Integer;
 anIntProc: TIntProc);
begin
 anIntProc (value);
 Inc (value);
 anIntProc (value);
end;

The function calls the method passed as parameter twice with two consecut-
ive integers values, the one passed as parameter and the following one. You
call the function by passing an actual anonymous method to it, with directly
in-place code that looks surprising:
procedure TFormAnonymFirst.btnProcParamClick(
 Sender: TObject);
begin
 CallTwice (48,
 procedure (n: Integer)
 begin
 Memo1.Lines.Add (IntToHex (n, 4));
 end);
 CallTwice (100,
 procedure (n: Integer)
 begin
 Memo1.Lines.Add (FloatToStr(Sqrt(n)));
 end);
end;

From the syntax point of view notice the procedure passed as parameter
withing parentheses and not terminated by a semicolon. The actual effect of
the code is to call the IntToHex with 48 and 49 and the FloatToStr on the
square root of 100 and 101, producing the following output:
0030
0031
10
10.0498756211209

Using Local Variables
We could have achieved the same effect using method pointers albeit with a
different and less readable syntax. What makes anonymous method clearly
different is the way they can refer to local variables of the calling method.
Consider the following code:

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 181

procedure TFormAnonymFirst.btnLocalValClick(
 Sender: TObject);
var
 aNumber: Integer;
begin
 aNumber := 0;
 CallTwice (10,
 procedure (n: Integer)
 begin
 Inc (aNumber, n);
 end);
 Memo1.Lines.Add (IntToStr (aNumber));
end;

Here the method, still passed to the CallTwice procedure, uses the local
parameter n, but also a local variable from the context from which it was
called, aNumber. What's the effect? The two calls of the anonymous method
will modify the local variable, adding the parameter to it, 10 the first time
and 11 the second. The final value of aNumber will be 21.

Extending the Lifetime of Local Variables
The previous example shows an interesting effect, but with a sequence of
nested function calls, the fact you can use the local variable isn't that sur-
prising. The power of anonymous methods, however, lies in the fact they can
use a local variable and also extend its lifetime until needed94. An example
will prove the point more than a lengthly explanation.

I've added (using class completion) to the TFormAnonymFirst form class of
the AnonymFirst example a property of an anonymous method pointer type
(well, actually the same anonymous method pointer type I've used in all of
the code of the project):
 private
 FAnonMeth: TIntProc;
 procedure SetAnonMeth(const Value: TIntProc);
 public
 property AnonMeth: TIntProc
 read FAnonMeth write SetAnonMeth;

94 In slightly more technical details, anonymous methods copy the variables and para-
meters they use to the heap when they are created, and keep them alive as long as the
specific instance of the anonymous method.

Marco Cantù, Delphi 2009 Handbook

182 - Chapter 6: Anonymous Methods

Then I've added to the form of the program two more buttons. The first
saves the property an anonymous method that uses a local variable (more or
less like in the previous btnLocalValClick method):
procedure TFormAnonymFirst.btnStoreClick(
 Sender: TObject);
var
 aNumber: Integer;
begin
 aNumber := 3;
 AnonMeth :=
 procedure (n: Integer)
 begin
 Inc (aNumber, n);
 Memo1.Lines.Add (IntToStr (aNumber));
 end;
end;

When this method executes the anonymous method is not executed, only
stored. The local variable aNumber is initialized to three, is not modified,
goes out of local scope (as the method terminates), and is displaced. At least,
that is what you'd expect from a standard Delphi code.

The second button I added to the form for this specific step call the anonym-
ous method stored in the AnonMeth property:
procedure TFormAnonymFirst.btnCallClick(Sender: TObject);
begin
 if Assigned (AnonMeth) then
 begin
 CallTwice (2, AnonMeth);
 end;
end;

When this code is executed, it calls an anonymous method that uses the
local variable aNumber of a method that's not on the stack any more.
However, since anonymous methods capture their execution context the
variable is still there and can be used as long as that given instance of the
anonymous method (that is, a reference to the method) is around.

As a further proof, do the following. Press the Store button once, the Call
button two times and you'll see that the same captured variable is being
used95:

95 The reason for this sequence is that the value starts at 3, each call to CallTwice
passed its parameter to the anonymous methods a first time (that is 2) and then a
second time after incrementing it (that is, the second time it passes 3).

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 183

5
8
10
13

Now press Store once more and press Call again. What happens, why is the
value of the local variable reset? By assigning a new anonymous method
instance, the old anonymous method is deleted (along with its own execu-
tion context) and a new execution context is capture, including a new
instance of the local variable. The full sequence Store – Call – Call – Store –
Call produces:
5
8
10
13
5
8

It is the implication of this behavior, resembling what some other languages
do, that makes anonymous methods an extremely powerful language fea-
ture, which you can use to implement something that simply wasn't possible
in the past.

More on Anonymous Methods
If the variable capture feature is one of the most relevant for anonymous
methods, there are a few more techniques that it are worth looking at,
before we focus on some real world examples.

The (Potentially) Missing Parenthesis
Notice that in the code above I used the AnonMeth symbol to refer to the
anonymous method, not to invoke it. For invoking it, I should have typed:
AnonMeth (2)

The difference is clear; I need to pass a proper parameter to invoke the
method. Things are slightly more confusing with parameterless anonymous
methods. If you declare:

Marco Cantù, Delphi 2009 Handbook

184 - Chapter 6: Anonymous Methods

type
 TAnyProc = reference to procedure;
var
 AnyProc: TAnyProc;

The call to AnyProc must be followed by the empty parenthesis, otherwise
the compiler things you are trying to get the method (its address) rather
than call it:
AnyProc ();

Something similar happens when you call a function that returns an
anonymous method, as in the following case taken from the usual Anonym-
First example:
function GetShowMethod: TIntProc;
var
 x: Integer;
begin
 x := Random (100);
 ShowMessage ('New x is ' + IntToStr (x));
 Result :=
 procedure (n: Integer)
 begin
 x := x + n;
 ShowMessage (IntToStr (x));
 end;
end;

Now the question is, how do you call it? If you simply call
 GetShowMethod;

It compiles and executes, but all it does is call the anonymous method
assignment code, throwing away the anonymous method returned by the
function.

How do you call the actual anonymous method passing a parameter to it?
One option is to use a temporary anonymous method variable:
var
 ip: TIntProc;
begin
 ip := GetShowMethod();
 ip (3);

Notice in this case the parenthesis after the GetShowMethod call. If you
omit them (a standard Pascal practice) you'll get the following error:
E2010 Incompatible types: 'TIntProc' and 'Procedure'

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 185

Without the parenthesis the compiler thinks you want to assign the
GetShowMethod function itself, and not its result to the ip method pointer.
Still, using a temporary variable might not be the best option in this case, as
is makes the code unnaturally complex. A simple call
 GetShowMethod(3);

won't compile, as you cannot pass a parameter to the method. You need to
add the empty parenthesis to the first call, and the Integer parameter to the
resulting anonymous method. Oddly enough, you can write:
 GetShowMethod()(3);

An alternative solution is to use the internal implementation of anonymous
methods, and call the low-level Invoke methods that gets added by the com-
piler (in which case you can omit the empty parenthesis):
 GetShowMethod.Invoke (3);

Behind Anonymous Methods
What is this Invoke method? What happens behind the scenes in the imple-
mentation of anonymous methods? The actual code generated by the
compiler for anonymous methods is based on interfaces, with a single invoc-
ation method called Invoke, plus the usual reference counting support
(that's useful to determine the lifetime of anonymous methods and the con-
text they capture).

You can see those interface methods in the editor if you use code comple-
tion, in the following way:

Getting details of the internals is probably very complicated and of limited
worth. Suffice to say that the implementation is very efficient, in terms of
speed, and requires about 500 extra bytes for each anonymous method.

Marco Cantù, Delphi 2009 Handbook

186 - Chapter 6: Anonymous Methods

In other words, a method reference in Delphi is implemented with a spe-
cial96 single method interface, with a compiler-generated method having the
same signature as the method reference it is implementing. The interface
uses all COM rules and takes advantage of reference counting for its auto-
matic disposal. Beside this hidden interface, for each invocation of an
anonymous method the compiler creates a hidden object that has the
method implementation and the data required to capture the invocation
context. That's how you get a new set of captured variables for each call of
the method.

Ready To Use Reference Types
Every time you use an anonymous method as a parameter you need to
define a corresponding reference pointer data type. To avoid the prolifera-
tion of local types, Delphi provides a number of ready-to-use reference
pointer types in the SysUtils unit. As you can see in the code snippet below,
most of these type definitions use parameterized types, so that with a single
generic declaration you have a different reference pointer type for each pos-
sible data type:
type
 TProc = reference to procedure;
 TProc<T> = reference to procedure (Arg1: T);
 TProc<T1,T2> = reference to procedure (
 Arg1: T1; Arg2: T2);
 TProc<T1,T2,T3> = reference to procedure (
 Arg1: T1; Arg2: T2; Arg3: T3);
 TProc<T1,T2,T3,T4> = reference to procedure (
 Arg1: T1; Arg2: T2; Arg3: T3; Arg4: T4);

Using these declarations, you can define procedures that take anonymous
method parameters like in the following:
procedure UseCode (proc: TProc);
function DoThis (proc: TProc): string;
function DoThat (procInt: TProc<Integer>): string;

In the first and second case you pass a parameterless anonymous method, in
the third you pass a method with a single Integer parameter:

96 Although practically the interface used for an anonymous method looks like any oth-
er interface, the compiler distinguishes between these special interfaces so you can-
not mix them in code.

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 187

UseCode (
 procedure
 begin
 ...
 end);
strRes := DoThat (
 procedure (I: Integer)
 begin
 ...
 end);

Similarly the SysUtils unit defines a set of anonymous method types with a
generic return value:
type
 TFunc<TResult> = reference to function: TResult;
 TFunc<T,TResult> = reference to function (
 Arg1: T): TResult;
 TFunc<T1,T2,TResult> = reference to function (
 Arg1: T1; Arg2: T2): TResult;
 TFunc<T1,T2,T3,TResult> = reference to function (
 Arg1: T1; Arg2: T2; Arg3: T3): TResult;
 TFunc<T1,T2,T3,T4,TResult> = reference to function (
 Arg1: T1; Arg2: T2; Arg3: T3; Arg4: T4): TResult;
 TPredicate<T> = reference to function (
 Arg1: T): Boolean;

These definitions are very broad, as you can use countless combinations of
data types for up to four parameters and a return type. The last definition is
very similar to the second, but corresponds to a specific case that is very fre-
quent, a function taking a generic parameter and returning a Boolean.

Anonymous Methods in the Real
World

At first sight, it is not easy to fully understand the power of anonymous
methods and the scenarios that can benefit from using them. That's why
rather than coming out with more convoluted examples covering the lan-
guage, I decided to focus on some that have a practical impact and provide
starting points for further exploration.

Marco Cantù, Delphi 2009 Handbook

188 - Chapter 6: Anonymous Methods

Anonymous Event Handlers
Since the early days, one of the distinguishing features of Delphi has been its
implementation of event handlers using method pointers. Now with the
advent of anonymous methods, it might be interesting to use this feature to
attach a new behavior to an event without having to declare a separate
method and capturing the method's execution context, thus avoiding adding
extra fields to a form to pass parameters from one method to another.

As an example, I've added an anonymous click event to a button, declaring a
proper method pointer type and adding a new event handler to a custom
button class (defined using an interceptor class97):
type
 TAnonNotif = reference to procedure (Sender: TObject);

 // interceptor class
 TButton = class (StdCtrls.TButton)
 private
 FAnonClick: TAnonNotif;
 procedure SetAnonClick(const Value: TAnonNotif);
 public
 procedure Click; override;
 public
 property AnonClick: TAnonNotif
 read FAnonClick write SetAnonClick;
 end;

The code of this class is fairly simple, as the setter method saved the new
pointer and the Click method calls it before doing the standard processing
(that is, calling the OnClick event handler if available):
procedure TButton.SetAnonClick(const Value: TAnonNotif);
begin
 FAnonClick := Value;
end;

97 An interceptor class is a derived class having the same name as its base class. Having
two classes with the same name is possible because the two classes are in different
units, so their full name (unitname.classname) is different. Declaring an interceptor
class can be handy as you can simply place a Button control on the form and attach
extra behavior to it, without having to install a new component in the IDE and re-
place the controls on your form with the new type. The only trick you have to remem-
ber is that if the definition of the interceptor class is in a separate unit (not the form
unit as in this simple example), that unit has to be listed in the uses statement after
the unit defining the base class.

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 189

procedure TButton.Click;
begin
 if Assigned (FAnonClick) then
 FAnonClick (self)
 inherited;
end;

How can you use this new event handler? Basically you can assign an
anonymous method to it
procedure TFormAnonButton.btnAssignClick(
 Sender: TObject);
begin
 btnInvoke.AnonClick :=
 procedure (Sender: TObject)
 begin
 ShowMessage ((Sender as TButton).Caption);
 end;
end;

Now this looks rather pointless, as the same effect could easily be achieved
using a standard event handler method. The following, instead, starts mak-
ing a difference, as the anonymous method captures a reference to the
component that assigned the event handler, by referencing the Sender
parameter.

This can be done after temporarily assigning it to a local variable, as the
Sender parameter of the anonymous method hides the btnKeepRefClick
method's Sender parameter:
procedure TFormAnonButton.btnKeepRefClick(
 Sender: TObject);
var
 aCompRef: TComponent;
begin
 aCompRef := Sender as TComponent;
 btnInvoke.AnonClick :=
 procedure (Sender: TObject)
 begin
 ShowMessage ((Sender as TButton).Caption +
 ' assigned by ' + aCompRef.Name);
 end;
end;

As you press the btnInvoke button, you'll see its caption along with the
name of the component that assigned the anonymous method handler:

Marco Cantù, Delphi 2009 Handbook

190 - Chapter 6: Anonymous Methods

An even more complicated situation is demonstrated by two further buttons,
that receive an anonymous method handler by clicking on the form with the
left or right mouse button, capturing the mouse click position:
procedure TFormAnonButton.FormMouseDown(
 Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Button = mbLeft then
 btnLeftInvokeForm.AnonClick :=
 procedure (Sender: TObject)
 begin
 (Sender as TButton).Caption :=
 'Last left on [' + IntToStr (X) +
 ',' + IntToStr (Y) + ']';
 end
 else
 btnRightInvokeForm.AnonClick :=
 procedure (Sender: TObject)
 begin
 (Sender as TButton).Caption :=
 'Last right on [' + IntToStr (X) +
 ',' + IntToStr (Y) + ']';
 end;
end;

This is another example of capturing the execution context, but this time
there can be two capture operations at the same time (each with its own data
kept in memory), and there could be even more than two. To implement the
same operation with method pointers you'd have to keep an array of mouse
clicks tied to each target component or use the components Tag property to
store a pointer to this information.

Timing Anonymous Methods
Developers frequently add timing code to existing routines to compare their
relative speed. I did the same a few times in examples in Part I of the book,
to figure out the speed of Unicode strings. Supposing you have two code

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 191

fragments and you want to compare their speed by executing them a few
million times, you could write the following (which is taken from the String-
Convert example of Chapter 2 and discussed in the section “Converting
Strings):
procedure TFormAnonTiming.btnClassicClick(
 Sender: TObject);
var
 str1: string;
 str2: AnsiString;
 I: Integer;
 t1: TDateTime;
begin
 str1 := 'Marco Cantù';
 t1 := Now;
 for I := 1 to MaxLoop2 do
 str1 := AnsiUpperCase (str1);
 t1 := now - t1;
 Memo1.Lines.Add ('AnsiUpperCase (string): ' +
 FormatDateTime('nn:ss.zzz', t1));

 str2 := 'Marco Cantù';
 t1 := Now;
 for I := 1 to MaxLoop2 do
 str2 := AnsiUpperCase (str2);
 t1 := now - t1;
 Memo1.Lines.Add ('AnsiUpperCase (AnsiString): ' +
 FormatDateTime('nn:ss.zzz', t1));
end;

Rather than repeating the timing code over and over, you can write a func-
tion with the timing code that would invoke the code snippet through a
parameterless anonymous method:
function TimeCode (nLoops: Integer; proc: TProc): string;
var
 t1: TDateTime;
 I: Integer;
begin
 t1 := Now;
 for I := 1 to nLoops do
 proc;
 t1 := now - t1;
 Result := FormatDateTime('nn:ss.zzz', t1);
end;

procedure TFormAnonTiming.btnAnonClick(Sender: TObject);
var
 str1: string;
 str2: AnsiString;

Marco Cantù, Delphi 2009 Handbook

192 - Chapter 6: Anonymous Methods

begin
 str1 := 'Marco Cantù';
 Memo1.Lines.Add ('AnsiUpperCase (string): ' +
 TimeCode (MaxLoop2,
 procedure ()
 begin
 str1 := AnsiUpperCase (str1);
 end));

 str2 := 'Marco Cantù';
 Memo1.Lines.Add ('AnsiUpperCase (AnsiString): ' +
 TimeCode (MaxLoop2,
 procedure ()
 begin
 str2 := AnsiUpperCase (str2);
 end));
end;

In the example code you'll also find a slightly better (and more precise) ver-
sion that uses GetTickCount rather then the current time (Now), although if
you are looking for really precise timing you would be better off using the
specific timing service offered by the QueryPerformanceCounter Win-
dows API.

Notice, though that if you execute the standard version and the one based on
anonymous methods you'll get output like the following:
Classic
AnsiUpperCase (string): 00:00.588
AnsiUpperCase (AnsiString): 00:01.087
Anonymous
AnsiUpperCase (string): 00:00.644
AnsiUpperCase (AnsiString): 00:01.153

As you can see, the anonymous method version sees a penalty of roughly
8%. The reason is that rather than directly executing the local code, the pro-
gram has to make a virtual call to the anonymous method implementation.
As this difference is consistent, the testing code makes perfect sense any-
way. However, if you need to squeeze performance from your code, using
anonymous method won't be as fast as directly writing the code, with using
a direct function. Using a method pointer would probably be somewhere in
between the two in terms of performance.

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 193

Thread Synchronization with the VCL
In multi-threaded applications that need to update the user interface, you
cannot access to properties of visual components (or in memory-objects)
that are part of the global thread without a synchronization mechanism. The
VCL, in fact, in not thread-safe (as is true for most user-interface libraries).
Two threads accessing an object at the same time could compromise its
state.

The classic solution offered by the TThread class in Delphi is to call a special
method, Synchronize, passing as a parameter the reference to another
method, the one to be executed safely. This second method cannot have
parameters, so it is common practice to add extra fields to the thread class
to pass the information from one method to another.

As a practical example, in the book Mastering Delphi 2005 I wrote a
WebFind example (a program that runs searches on Google via HTTP and
extracts the resulting links from the HTML of the page), with the following
thread class:
type
 TFindWebThread = class(TThread)
 protected
 Addr, Text, Status: string;
 procedure Execute; override;
 procedure AddToList;
 procedure ShowStatus;
 procedure GrabHtml;
 procedure HtmlToList;
 procedure HttpWork (Sender: TObject;
 AWorkMode: TWorkMode; AWorkCount: Int64);
 public
 strUrl: string;
 strRead: string;
 end;

The three protected string fields and some of the extra methods have been
introduced to support synchronization with the user interface. For example,
the HttpWork event handler hooked to an event of an internal IdHttp object
(an Indy component supporting the client side of the HTTP protocol), used
to have the the following code, that called the ShowStatus method:
procedure TFindWebThread.HttpWork(Sender: TObject;
 AWorkMode: TWorkMode; AWorkCount: Int64);
begin
 Status := 'Received ' + IntToStr (AWorkCount) +

Marco Cantù, Delphi 2009 Handbook

194 - Chapter 6: Anonymous Methods

 ' for ' + strUrl;
 Synchronize (ShowStatus);
end;

procedure TFindWebThread.ShowStatus;
begin
 Form1.StatusBar1.SimpleText := Status;
end;

In Delphi 2009, the Synchronize method has two different overloaded
definitions:
type
 TThreadMethod = procedure of object;
 TThreadProcedure = reference to procedure;

 TThread = class
 ...
 procedure Synchronize(
 AMethod: TThreadMethod); overload;
 procedure Synchronize(
 AThreadProc: TThreadProcedure); overload;

For this reason we can remove the Status text field and the ShowStatus
function, and rewrite the HttpWork event handler using the new version of
Synchronize and an anonymous method:
procedure TFindWebThreadAnon.HttpWork(Sender: TObject;
 AWorkMode: TWorkMode; AWorkCount: Int64);
begin
 Synchronize (
 procedure
 begin
 Form1.StatusBar1.SimpleText :=
 'Received ' + IntToStr (AWorkCount) +
 ' for ' + strUrl;
 end);
end;

Using the same approach throughout the code of the class, the thread class
becomes the following (you can find both thread classes in the version of the
WebFind example that comes with the source code of this book):
type
 TFindWebThreadAnon = class(TThread)
 protected
 procedure Execute; override;
 procedure GrabHtml;
 procedure HtmlToList;
 procedure HttpWork (Sender: TObject;
 AWorkMode: TWorkMode; AWorkCount: Int64);

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 195

 public
 strUrl: string;
 strRead: string;
 end;

Here is another method in its updated version, the part that does the HTML
parsing and outputs the URLs and the descriptions of the links in a ListBox:
procedure TFindWebThreadAnon.HtmlToList;
var
 strAddr, strText: string;
 nText: integer;
 nBegin, nEnd: Integer;
begin
 Synchronize (
 procedure
 begin
 Form1.StatusBar1.SimpleText :=
 'Extracting data for: ' + StrUrl;
 end);

 strRead := LowerCase (strRead);
 nBegin := 1;
 repeat
 // find the initial part HTTP reference
 nBegin := PosEx ('href="http', strRead, nBegin);
 if nBegin <> 0 then
 begin
 // find the end of the href tag (closing quotes)
 nBegin := nBegin + 6;
 nEnd := PosEx ('"', strRead, nBegin);
 strAddr := Copy (strRead, nBegin, nEnd - nBegin);

 // move on
 nBegin := PosEx ('>', strRead, nEnd) + 1;
 // add the URL if 'google' is not in it
 if Pos ('google', strAddr) = 0 then
 begin
 nText := PosEx ('', strRead, nBegin);
 strText := copy (strRead, nBegin, nText - nBegin);
 // remove cached references and duplicates
 if (Pos ('cache', strText) = 0) then
 begin
 Synchronize (
 procedure
 begin
 if Form1.ListBox1.Items.IndexOf (
 strAddr) < 0 then
 begin
 Form1.ListBox1.Items.Add (strAddr);

Marco Cantù, Delphi 2009 Handbook

196 - Chapter 6: Anonymous Methods

 Form1.DetailsList.Add (strText);
 end;
 end);
 end;
 end;
 end;
 until nBegin = 0;
end;

I think this demonstrates how using anonymous methods simplifies the
code needed for thread synchronization.

Parallel For Loop
One of the core reasons behind the introduction of anonymous methods in
Delphi 2009 is the desire to create a parallel library, a collection of tech-
niques to allow applications to take advantage of the multi-core CPUs any
modern computer has these days. Rather than having to manually code
multi-threaded applications, such a library would let you write almost
standard code that creates threads behind the scenes.

This library is the subject of many blog posts by Delphi's chief architect
Allen Bauer and other members of the R&D team. It is listed among the fea-
tures expected in the next version of Delphi in the current product roadmap.
Meanwhile, anonymous methods let you start experimenting in this direc-
tion. Here I'll present a simplified version of a parallel for loop (this version
works but is not general enough and not completely free of small glitches).
I've seen more complete solutions, but their code was too complex to discuss
here.

What is a parallel for? It is a for loop processed in parallel by multiple
threads, each taking care of a portion of the loop iterations. Let's start by
looking at the original source code, that uses a terribly slow implementa-
tion98 of a function for computing if a number is a prime number:
const
 Max = 50000;

procedure TFormParallelFor.btnPlainClick(

98 This is done on purpose, to slow down the code. The functions becomes slower as the
number it is testing increases. This is why splitting the range of number of process in
two, half for each thread, wont' work: The thread working on higher numbers would
take way more time than the other.

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 197

 Sender: TObject);
var
 I, Tot: Integer;
 Ticks: Integer;
begin
 // counts the prime numbers below a given value
 Tot := 0;
 Ticks := GetTickCount;
 for I := 1 to Max do
 begin
 if IsPrime (I) then
 Inc (Tot);
 Application.ProcessMessages;
 end;
 Ticks := GetTickCount - Ticks;
 Memo1.Lines.Add (Format (
 'No threads: %d - %d', [Ticks, Tot]));
end;

Now it would be nice to wrap the core method of the loop (and the final out-
put of the total and time) into separate anonymous methods to be passes to
a ParallelFor function:
procedure TFormParallelFor.btnParallel2Click(
 Sender: TObject);
var
 Tot: Integer;
 Ticks: Cardinal;
begin
 Tot := 0;
 Ticks := GetTickCount;
 ParallelFor (1, Max, 2,
 procedure (I: Integer)
 begin
 if IsPrime (I) then
 InterlockedIncrement (Tot);
 end);
 Ticks := GetTickCount - Ticks;
 Memo1.Lines.Add (Format (
 '2 threads: %d - %d', [Ticks, Tot]));
end;

The call is almost identical. I've replaced the for loop with the ParallelFor
call, removed the Application.ProcessMessages call (not needed by a
thread), and replaced Inc with InterlockedIncrement as multiple
threads could access the global value (the value captured by the anonymous
method) at the exact same time.

Marco Cantù, Delphi 2009 Handbook

198 - Chapter 6: Anonymous Methods

The call to ParallelFor passes the lower and upper bound of the loop, the
number of threads to use, and the actual code to execute. In this case, the
program will use two threads, but there are other buttons in the example
asking for a single thread or four for them. The final code at the end of the
method is executed when the loop is finished, because ParallelFor waits
for the threads it spawns.

Before looking at the actual implementation of my simple ParallelFor,
let's see if if helps in any way. I've executed the program on my dual-core
laptop, in the classic version, and with 1, 2 or 4 threads, computing the num-
ber of primes below 50,000. Here you can see the version, the number of
ticks / milliseconds, and the actual result:
No threads: 1514 - 5134
1 thread: 1544 - 5134
2 threads: 889 - 5134
4 threads: 1029 - 5134

As expected, the threaded version has a small overhead, but running two
threads take almost half of the time, while increasing the number of threads
adds extra overhead and resource contention, making the result worse (but
still better than the original version). In other words, this is quite an effort
but it makes sense, because the ParallelFor in the optimal case let's save
over 40% of the 1.5 seconds of the original version.

Here is the code of the ParallelFor function:
procedure ParallelFor (nMin, nMax, nThreads: Integer;
 aProc: TProc<Integer>);
var
 threads: array of TParallel;
 I: Integer;
begin
 // inizialize TParallel class data
 TParallel.CurrPos := nMin;
 TParallel.MaxPos := nMax;
 TParallel.cs := TCriticalSection.Create;
 TParallel.ThCount := 0;

 // create the threads
 SetLength (threads, nThreads);
 for I := 0 to Length (threads) - 1 do
 begin
 threads[I] := TParallel.Create; // suspended
 threads[I].Proc := aProc;
 threads[I].Resume;
 end;

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 199

 while TParallel.ThCount > 0 do
 begin
 Application.ProcessMessages;
 Sleep (100);
 end;
end;

This global function sets up the requested number of threads, activates
them, and then waits for all threads to finish. The ThCount class data of the
TParallel class, in fact, is incremented by each thread on startup and
decremented by the class destructor (automatically triggered by setting the
FreeOnTerminate property within the thread class constructor).

The core of the work is performed by the thread class which has a critical
section that is used when asking for the next value to process:
type
 TParallel = class(TThread)
 private
 FProc: TProc<Integer>;
 protected
 procedure Execute; override;
 function GetNextValue: Integer;
 public
 constructor Create;
 destructor Destroy; override;

 property Proc: TProc<Integer>
 read FProc write FProc;
 class var
 CurrPos: Integer;
 MaxPos: Integer;
 cs: TCriticalSection;
 ThCount: Integer;
 end;

The most interesting methods are those used to grab the next value and to
do the actual processing on it. Their code should be self-explanatory:
procedure TParallel.Execute;
var
 nCurrent: Integer;
begin
 nCurrent := GetNextValue;
 while nCurrent <= MaxPos do
 begin
 Proc (nCurrent);
 nCurrent := GetNextValue;
 end;
end;

Marco Cantù, Delphi 2009 Handbook

200 - Chapter 6: Anonymous Methods

function TParallel.GetNextValue: Integer;
begin
 cs.Acquire;
 try
 Result := CurrPos;
 Inc(CurrPos);
 finally
 cs.Release;
 end;
end;

I hope this example demonstrates the possibilities opened up by the intro-
duction of anonymous methods.

AJAX in Delphi
The last example in this section, called AnonAjax, is one of my favorites, for
the simple reason that I learned using closures (or anonymous methods) in
JavaScript, while writing AJAX applications with the jQuery library.

The AjaxCall global function is not unlike the ParallelFor function of
the previous example, as it also spawns a thread. This time, however, the
function terminates without waiting for the thread to complete, but passes
the thread an anonymous method to execute on completion. The function is
just a wrapper around the thread constructor:
type
 TAjaxCallback = reference to procedure (
 ResponseContent: TStringStream);

procedure AjaxCall (const strUrl: string;
 ajaxCallback: TAjaxCallback);
begin
 TAjaxThread.Create (strUrl, ajaxCallback);
end;

All of the code is in the TAjaxThread class, a thread class with an internal
Indy HTTP client component used to access to a given URL, asynchron-
ously:
type
 TAjaxThread = class (TThread)
 private
 fIdHttp: TIdHttp;
 fURL: string;
 fAjaxCallback: TAjaxCallback;
 protected

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 201

 procedure Execute; override;
 public
 constructor Create (const strUrl: string;
 ajaxCallback: TAjaxCallback);
 destructor Destroy; override;
 end;

The constructor does some initialization, copying its parameters to the cor-
responding local fields of the thread class and creating the fIdHttp object.
The real meat of the class is in its Execute method, which does the HTTP
request, saving the result in a stream that is later reset and passed to the
callback function – the anonymous method:
procedure TAjaxThread.Execute;
var
 aResponseContent: TStringStream;
begin
 aResponseContent := TStringStream.Create;
 try
 fIdHttp.Get (fURL, aResponseContent);
 aResponseContent.Position := 0;
 fAjaxCallback (aResponseContent);
 finally
 aResponseContent.Free;
 end;
end;

As an example of its usage, the AnonAjax example has a button used to copy
the content of a Web page to a Memo control (adding the requested URL at
the beginning):
procedure TFormAnonAjax.btnReadClick(Sender: TObject);
begin
 AjaxCall (edUrl.Text,
 procedure (aResponseContent: TStringStream)
 begin
 Memo1.Lines.Text := aResponseContent.DataString;
 Memo1.Lines.Insert (
 0, 'From URL: ' + edUrl.Text);
 end);
end;

After the HTTP request has finished, you can do any sort of processing you
want on it.

Another example would be to extract links from the HTML file (in a way that
resembles the WebFind example covered earlier). Again, to make this func-
tion flexible, it takes as a parameter the anonymous method to execute for
each link:

Marco Cantù, Delphi 2009 Handbook

202 - Chapter 6: Anonymous Methods

type
 TLinkCallback = reference to procedure (
 const strLink: string);

procedure ExtractLinks (strData: string;
 procLink: TLinkCallback);
var
 strAddr: string;
 nBegin, nEnd: Integer;
begin
 strData := LowerCase (strData);
 nBegin := 1;
 repeat
 nBegin := PosEx ('href="http', strData, nBegin);
 if nBegin <> 0 then
 begin
 // find the end of the HTTP reference
 nBegin := nBegin + 6;
 nEnd := PosEx ('"', strData, nBegin);
 strAddr := Copy (strData, nBegin, nEnd - nBegin);
 // move on
 nBegin := nEnd + 1;
 // execute anon method
 procLink (strAddr)
 end;
 until nBegin = 0;
end;

If you apply this function to the result of an AJAX call and provide a further
method for processing, you end up with two nested anonymous method
calls, like in the second button of the AnonAjax example:
procedure TFormAnonAjax.btnLinksClick(Sender: TObject);
begin
 AjaxCall (edUrl.Text,
 procedure (aResponseContent: TStringStream)
 begin
 ExtractLinks(aResponseContent.DataString,
 procedure (const aUrl: string)
 begin
 Memo1.Lines.Add (aUrl + ' in ' + edUrl.Text);
 end);
 end);
end;

In this case the Memo control will receive a collection of links, instead of the
HTML of the returned page. A variation to the link extraction routine above
would be an image extraction routine. The ExtractImages function grabs
the source (src) of the img tags of the HTML file returned, and calls

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 203

another TLinkCallback-compatible anonymous method (see the source
code for the function details).

Now you can envision opening an HTML page (with the AjaxCall
function), extract the image links, and use AjaxCall again to grab the
actual images. This means using a triple-nested closure, in a coding struc-
ture that some Delphi programmers might find unreadable99 (it takes a
while to get used to it!), but is certainly very powerful and expressive:
procedure TFormAnonAjax.btnImagesClick(Sender: TObject);
var
 nHit: Integer;
begin
 nHit := 0;
 AjaxCall (edUrl.Text,
 procedure (aResponseContent: TStringStream)
 begin
 ExtractImages(aResponseContent.DataString,
 procedure (const aUrl: string)
 begin
 Inc (nHit);
 Memo1.Lines.Add (IntToStr (nHit) + '.' +
 aUrl + ' in ' + edUrl.Text);
 if nHit = 1 then // load the first
 begin
 AjaxCall (aUrl,
 procedure (aResponseContent: TStringStream)
 begin
 // load image of the current type only
 Image1.Picture.Graphic.
 LoadFromStream(aResponseContent);
 end);
 end;
 end);
 end);
end;

Beside the fact that the graphic only works in the case where you are loading
a file with the same format as the one already in the Image component, the
code and its result are both impressive. Here is the effect of pressing the
btnImages button with the URL of my blog:

99 This code snippet was the topic of a blog post of mine, “Anonymous, Anonymous, An-
onymous” of September 2008, which attracted some comments, as you can see on:
http://blog.marcocantu.com/blog/anonymous_3.html.

Marco Cantù, Delphi 2009 Handbook

204 - Chapter 6: Anonymous Methods

Notice in particular the numbering sequence, based on the capture of the
nHit local variable. What happens if you press the button twice, in a fast
sequence? Each of the anonymous methods will get a different copy of the
nHit counter, and they might potentially be displayed out of sequence in the
list, with the second thread starting to produce its output before the first.

Debating the AJAX Demo
After I blogged about this example, there was some debate about the read-
ability and the usefulness of anonymous methods. I replied to these critical
voices (some of which do have a point) with another blog post in which I
tried to clarify the situation. As it adds some extra information to the use of
anonymous methods (and some other alternatives) I think it is worth
reporting it, in an slightly edited version:

The post I made yesterday on anonymous methods, a new feature
in Delphi 2009, stirred controversy. I agree on the readability
comments, but you should also consider that using three nested
anonymous methods was quite a stretch, not a common usage
scenario.

Let's start from the beginning and examine only one step. I want to
make an HTTP call and process the result. This has to be done in a

Marco Cantù, Delphi 2009 Handbook

Chapter 6: Anonymous Methods - 205

thread, since I don't want it to be blocking. So whether you use
anonymous methods or not you need to define a custom TThread
class. Now suppose you want to use the same thread class (or its
HTTP support code) for slightly different situations. You have two
traditional options:

1. Inherit a class for each usage scenario and use the template pat-
tern: the thread Execute method will call a virtual function each
specific class can override. Nice, but in case the specific code is lim-
ited, creating many similar classes, mostly used only for a single
object in a specific situation is far from a nice architecture.

2. Delphi classic alternative to inheritance is to use events. In fact,
you don't inherit from TButton to override the Click method, but
assign an external procedure to the event, using method pointers.
Each customization is in a separate method you assign.

Method pointers and anonymous methods are not that different. In
one case you can write the procedure in-place, but that is an
option. For readability, you can write the method's code as a series
of separate functions, each assigned to an anonymous method
pointer to be called later on. Will this be more readable? Possibly,
even if (from JavaScript experience) I think it is mostly a matter of
getting used to one style or another. In other words, syntax aside,
the concept of an anonymous method is not far from that of a
method pointer, but the fact they introduce a new lifetime model
for variables can help.

This brings me to another point, why not keep using method point-
ers. Having to allocate memory for every invocation of an event (in
the case of parallel code execution) would be far from trivial in
many cases in which anonymous methods just "magically" work.
As a commenter noted about the code, if you hit the button many
times the nHit stack-based variable gets duplicated and captured
for each anonymous method invocation, so not only does it live
beyond its original stack location, but you can have multiple
instances at the same time.

Would this mean each and every Delphi code would benefit from
this new technology? Of course not, I think it is useful only in a
fraction of cases. I remain convinced that an Ajax-like call is a nice

Marco Cantù, Delphi 2009 Handbook

206 - Chapter 6: Anonymous Methods

scenario and that it will take some time for the Delphi community
at large to master this new language feature.

What's Next
Now that I've covered the two major new language features of Delphi 2009,
generics and anonymous methods, it is time to start looking at many other
minor (but still relevant) changes. This will be the topic of the first part of
the next chapter, that also covers RTL changes since Delphi 2007.

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 207

Chapter 7: More
Language And

RTL Changes

In the initial Unicode chapters and in the last two chapters on language fea-
tures, I've covered most of the new compiler changes and also introduced a
large number of new RTL classes, from TCharacter and TEncoding to the
new generic containers. You can find a complete list in the section “Sum-
mary of New Units and New RTL Classes” at the end of this chapter. Here
I'm introducing other new features of the compiler and RTL areas that did-
n't fit in any of the previous chapters.

Marco Cantù, Delphi 2009 Handbook

208 - Chapter 7: More Language and RTL Changes

Other New Language Features
With so many new important features in the Object Pascal language is it
easy to miss some of the minor ones, that would have been significant in
other versions with a smaller set of changes.

Compiler Version
The specific define for the Delphi 2009 compiler is VER200. If you need to
have specific code for one of the recent versions of Delphi, you can base your
$IFDEF statements on the following defines:

D2006 VER180

D2007.Win32 VER185 and VER180

D2007.Net VER190

Delphi 2009 VER200

As usual, you can also use the internal versioning constants in $IF state-
ments, with the advantage of being able to use >= rather than a specific
match. The versioning constants are called CompilerVersion and
RTLVersion and in Delphi 2009 they are assigned to the floating-point
value 20.00.

Below is a code snippet with the tests based on define and one of the con-
stants, extracted from the MinorLang project:
 {$IFDEF VER200}
 ShowMessage ('Delphi 2009');
 {$ENDIF}

 {$IF RTLVersion >= 20}
 ShowMessage ('Delphi 2009 or newer');
 {$IFEND}

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 209

A Commented Deprecated Directive
The deprecated directive, used to indicate a symbol is still available for
compatibility reasons only, can now be followed by a string that will be dis-
played as part of the compiler warning. If you define a procedure and call it
as in the following code snippet (from the MinorLang demo):
procedure DoNothing;
 deprecated 'use DoSomething instead';
begin
end;

procedure TFormMinorLang.btnDepracatedClick(
 Sender: TObject);
begin
 DoNothing;
end;

At the call location (in the btnDepracatedClick method) you'll get the fol-
lowing warning:
W1000 Symbol 'DoNothing' is deprecated: 'use DoSomething
instead'

This is way better than the previous practice of adding a comment to declar-
ation of the deprecated symbol, having to click on the error message to get
to the source code line in which this is used, jump to the declaration loca-
tion, and find the comment.

Needless to say the code above won't compile in Delphi 2007, where you get
the error:
E2029 Declaration expected but string constant found

The new feature of deprecated is used rather heavily in the Delphi 2009
RTL and VCL, while I'm expecting third party vendors having to refrain
from using it because of the incompatibility with past versions of the com-
piler, even if they could now use:
{$IF RTLVersion >= 20}
 deprecated 'use DoSomething instead';
{$IFEND}

Marco Cantù, Delphi 2009 Handbook

210 - Chapter 7: More Language and RTL Changes

Exit with a Value
Traditionally Pascal functions used to assign a result by using the function
name, as in:
function ComputeValue: Integer;
begin
 ...
 ComputeValue := 10;
end;

Delphi has long provided an alternative coding, using the Result identifier
to assign a return value to a function:
function ComputeValue: Integer;
begin
 ...
 Result := 10;
end;

The two approaches are identical and do not alter the flow of the code. If you
need to assign the function result and stop the current execution you can to
use two separate statements, assign the result and then call Exit. The fol-
lowing code snippet looking for a string containing a given number in a
string list (part of the MinorLang example) shows a classic example of this
approach:
function FindExit (sl: TStringList; n: Integer): string;
var
 I: Integer;
begin
 for I := 0 to sl.Count do
 if Pos (IntToStr (n), sl[I]) > 0 then
 begin
 Result := sl[I];
 Exit;
 end;
end;

In Delphi 2009 you can replace the two statements with a new special call to
Exit passing to it the return value of the function, in a way resembling the C
language return statement. So you can write the code above in a more com-
pact version (also because with a single statement you can avoid the begin/
end):
function FindExitValue (
 sl: TStringList; n: Integer): string;
var

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 211

 I: Integer;
begin
 for I := 0 to sl.Count do
 if Pos (IntToStr (n), sl[I]) > 0 then
 Exit (sl[I]);
end;

Setting Properties by Reference
In the Delphi 6 time frame, the Delphi compiler allowed you to define prop-
erties using a setter method that had a reference parameter. This unwanted
feature was later removed, as it could lead to errors. Now for the sake of
COM programming, “put by ref” properties100 have been added to the lan-
guage. Still, you have to ask specifically for this feature using a new compiler
directive:
{$VARPROPSETTER ON}

Without this directive, the following code won't compile and issue the error
“E2282 Property setters cannot take var parameters”:
type
 TMyIntegerClass = class
 private
 fNumber: Integer;
 function GetNumber: Integer;
 procedure SetNumber(var Value: Integer);
 public
 property Number: Integer
 read GetNumber write SetNumber;
 end;

This class is part of the VarProp example. Now what is very odd is that you
can have side effects within the property setter:
procedure TMyIntegerClass.SetNumber(var Value: Integer);
begin
 Inc (Value); // side effect
 fNumber := Value;
end;

100 This is the name Delphi R&D team member Chris Bensen gave to this feature it its
blog post introducing the topic:
http://chrisbensen.blogspot.com/2008/04/delphi-put-by-ref-properties.html

Marco Cantù, Delphi 2009 Handbook

212 - Chapter 7: More Language and RTL Changes

The other very unusual effect is that you cannot assign a constant value to
the property, only a variable (which should be expected, as with any call
involving a parameter passed by reference):
var
 mc: TMyIntegerClass;
begin
 ...
 mc.Count := 10; // Error: E2036 Variable required
 mc.Number := n;

Again, this feature was introduced for COM support, and you'll see it at the
beginning of type library files. Oddly enough if you define a “put by ref”
property of string type, you can pass a string variable to it... but the compiler
also lets you assign a string constant, which will cause an error at runtime.
This is demonstrated in the VarProp example.

Changes in Overloading
The Delphi 2009 compiler sees quite a number of internal changes in the
way the compiler chooses the function to call in the case of multiple over-
loaded versions where none of them is an exact match. This is particularly so
when variants are involved.

There are two different situations you might come across:

● Code that used to compile now issues a compiler error

● Code that used to call one method now ends up calling a different
one

Needless to say that while the first might be annoying it is easily fixed by
adding an explicit type cast, while the second is much more subtle and dan-
gerous, as you might only know that things go wrong only by running the
program.

A complete case-by-case analysis would be extremely time consuming, as
the combinations are almost endless. What I've done, instead, is to create a
program with a few specific and interesting test cases, and show you what
happens in Delphi 2007 and Delphi 2009. That's why in the VariantOver
folder you'll find two projects, one for each of these versions of the IDE.

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 213

Code That Triggers a Compiler Error
Let me start with an example that won't compile any more. Suppose you
have two overloaded methods like:
 procedure ShowValue(I: Integer); overload;
 procedure ShowValue(s: string); overload;

Now in Delphi 2007 you could call it in the following way:
var
 v: variant;
begin
 v := 3;
 ShowValue (v);

However if you wrote:
 v := 'foo';
 ShowValue (v);

This would cause a runtime error, complaining about a wrong variant to
boolean conversion. Delphi 2009 changes this considerably. The two calls to
ShowValue with a variant parameter simply refuse to compile, claiming that
it cannot determine which of the two versions to call:
[DCC Error] E2251 Ambiguous overloaded call to 'ShowValue'
 Related method: procedure
TFormVariantOver.ShowValue(Integer);
 Related method: procedure
TFormVariantOver.ShowValue(string);

What's nice is that you see more details that in the past. In the error mes-
sage pane you'll see an error with a plus sign that can be expanded to get
further details:

Again, getting a compiler error (a detailed one in this case) is not that bad,
as this gives you an option to recognize the potential issue and fix it by cast-
ing the variant to a specific type:
 ShowValue (Integer(v));
 ShowValue (string(v));

This code works in Delphi 2009 and works better in Delphi 2007 as well, as
you won't get the runtime variant conversion error any more.

Marco Cantù, Delphi 2009 Handbook

214 - Chapter 7: More Language and RTL Changes

Code That Calls a Different Method
Things are not as nice in the situations in which the Delphi 2009 compiler
ends up calling a different method that you'd expect from previous versions.
This is an extremely rare circumstance, but it is technically possible (even if
in some convoluted cases).

Consider the following code (part of the VariantOver example), declaring a
record type with an Implicit conversion:
type
 TMyRecord = record
 private
 X: Integer;
 public
 class operator Implicit (
 const Value: Variant): TMyRecord;
 end;

Now suppose you have two overloaded methods taking either a record or an
Integer parameter:
 procedure ShowValue3 (const R: TMyRecord); overload;
 procedure ShowValue3 (X: Integer); overload;

What happens if you pass a variant? The compiler can either convert the
variant to the Integer or use the Implicit operation to convert it to a
record. This is the call :
var
 v: Variant;
begin
 v := 10;
 ShowValue3 (v);
end;

What happens is that in Delphi 2007 this code calls the Integer overload,
while Delphi 2009 compiler gives precedence to the Implicit overload.

New and Aliased Integral Types
Although this is not strictly a compiler change, but rather an addition in the
System unit, you can now use a set of easier-to-remember aliases for signed
and unsigned integral data types. These are the signed and unsigned pre-
defined types in the compiler:

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 215

Signed Unsigned

ShortInt Byte

SmallInt Word

Integer Cardinal

NativeInt NativeUInt

Int64 UInt64

These types were already in Delphi 2007 and previous versions, but the
64bit ones date back only a few versions of the compiler. The NativeInt
and NativeUInt types, which should depend on the compiler version (32
bit and future 64 bit) were already in Delphi 2007 but they were not docu-
mented and, even worse, they were not correct!

If you need a data type that will match the CPU native integer size, these are
the types to use. The Integer type, in fact, is expected to remain unchanged
when moving from 32-bit to 64-bit compilers.

The following set of predefined aliases added by System unit is however
brand new in Delphi 2009:
type
 Int8 = ShortInt;
 Int16 = SmallInt;
 Int32 = Integer;
 UInt8 = Byte;
 UInt16 = Word;
 UInt32 = Cardinal;

Although they don't add anything new, they are probably easier to use, as it
is generally hard to remember if a ShortInt is smaller than a SmallInt, where
it is easy to remember the actual implementation of Int16 or Int8101.

101 The new type aliases are very C-like.

Marco Cantù, Delphi 2009 Handbook

216 - Chapter 7: More Language and RTL Changes

TObject's New Methods
The structure of the TObject class has remained quite stable over the years.
Delphi 2009 sees some interesting improvements. Not only has the mother
of all Delphi classes four new methods, but three of these new methods are
virtual methods you are supposed to redefine in your own classes. If you've
used the .NET framework (using Delphi for .NET or other languages) you'll
immediately recognize these methods are part of the System.Object class
of the .NET class library102.

The ToString Method
The ToString virtual function is a placeholder for returning the textual rep-
resentation (a description) of a given object. The default implementation of
the method in the TObject class returns the class name:
function TObject.ToString: string;
begin
 Result := ClassName;
end;

Some of the new classes of Delphi 2009 override the ToString virtual func-
tion, like TStringBuilder and TStringWriter. Among the existing
classes, the method has been redefined in the Exception class, to return
the messages in a list of exceptions (as covered in the section “The InnerEx-
ception Mechanism” later in this chapter).

Overall, I think that having a standard way to return the string representa-
tion of any object is quite an interesting one. I wish the VCL could be
updated to better support the function in several components and control.

Notice that the ToString method often overloads the “parse token String”
or toString symbol defined in the Classes unit. For this reason you'll often
see that symbol referenced as Classes.toString.

102 Similar method names are used for the base classes available in Java, are commonly
used in JavaScript, and in other OO languages. The origin of some of them, like that
of toString, can be traced back to Smalltalk.

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 217

The Equals Method
The Equals virtual function is a placeholder for checking if two objects have
the same logical value, a different operation than checking if two variables
refer to the same object, something you can achieve with the = sign.
However, and this is really confusing, the default implementation does
exactly that:
function TObject.Equals(Obj: TObject): Boolean;
begin
 Result := Obj = Self;
end;

There are some cases in the VCL source code in which the Equals call is
indeed used as a replacement of the = test. The opposite approach is used,
for example, by TStrings.Equals, in which the class compares the num-
ber of strings and the actual strings one by one.

The only section of the library in which this technique is significantly used
(and probably the reason it was added) is the generics support, in particular
in the Generics.Default and Generics.Collections units. However, defining
an object equivalence mechanism “by value” is common in many Delphi lib-
raries and frameworks, and having a standard way of doing this is certainly
a big advantage.

The GetHashCode Method
The GetHashCode virtual function is another placeholder borrowed from
the .NET Framework to let each class calculate the hash code for its objects.
The default code returns a seemingly random value103, the address of the
object itself:
function TObject.GetHashCode: Integer;
begin
 Result := Integer(Self);
end;

The GetHashCode virtual function is currently used in the VCL.NET por-
tions of the VCL, but having the same function on both sides can certainly

103 With the address of the objects being created generally taken from a limited set of
heap areas, the distribution of these number is not even, and this can adversely affect
a hashing algorithm.

Marco Cantù, Delphi 2009 Handbook

218 - Chapter 7: More Language and RTL Changes

help unifying the source code in the near future. Again, some of the units
providing Generics support use the GetHashCode function.

The UnitName Method
The other (unrelated) method is the class function UnitName, which is not a
virtual function, and returns the name of the unit in which the class is
defined. In the past you had to resort to low-level techniques (accessing the
internal representation of a class) to access the same information.

Porting an Example from .NET
To demonstrate the new features of TObject, rather than write a brand new
demo I've decided to port a Delphi .NET example I wrote for Mastering
Delphi 2005, and originally called FclSystemObject as it focused on the
System.Object class. The new example is called SystemObject even if it
covers the plain old TObject class.

First of all the example has a class that overrides two of the new virtual
methods of TObject:
type
 TAnyObject = class
 private
 Value: Integer;
 name: string;
 public
 constructor Create (aName: string; aValue: Integer);
 function Equals(obj: TObject): Boolean; override;
 function ToString: string; override;
 end;

In the implementation of the three methods I simply had to change a call to
GetType with that to ClassType:
constructor TAnyObject.Create(aName: string;
 aValue: Integer);
begin
 inherited Create;
 name := aName;
 Value := aValue;
end;

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 219

function TAnyObject.Equals(obj: TObject): Boolean;
begin
 Result := (obj.ClassType = self.ClassType) and
 ((obj as TAnyObject).Value = self.Value);
end;

function TAnyObject.ToString: string;
begin
 Result := Name;
end;

Notice that objects are considered equal if they are of the same exact class
and their value matches, while their string representation includes only the
name field. The program creates some objects of this class as its starts, asso-
ciating them with the elements of two combo boxes:
procedure TFormSystemObject.FormCreate(Sender: TObject);
begin
 ao1 := TAnyObject.Create ('ao1', 10);
 ao2 := TAnyObject.Create ('ao2 or ao3', 20);
 ao3 := ao2;
 ao4 := TAnyObject.Create ('ao4', 20);

 ComboBox1.Items.AddObject (ao1.ToString, ao1);
 ComboBox1.Items.AddObject (ao2.ToString, ao2);
 ComboBox1.Items.AddObject (ao3.ToString, ao3);
 ComboBox1.Items.AddObject (ao4.ToString, ao4);

 ComboBox2.Items.AddObject (ao1.ToString, ao1);
 ComboBox2.Items.AddObject (ao2.ToString, ao2);
 ComboBox2.Items.AddObject (ao3.ToString, ao3);
 ComboBox2.Items.AddObject (ao4.ToString, ao4);
end;

Notice that two references (ao2 and ao3) point to the same object in
memory, and that the last object (ao4) has the same numerical value. As you
select items in both combo boxes, you can compare the objects you have
selected, both using equals and doing a direct reference comparison:
procedure TFormSystemObject.btnCompareClick(
 Sender: TObject);
begin
 Log ('Comparing ' +
 ComboBox1.Items [ComboBox1.ItemIndex] +
 ' and ' +
 ComboBox2.Items [ComboBox2.ItemIndex]);
 Log ('Equals: ' + BoolToStr (
 ComboBox1.Items.Objects [ComboBox1.ItemIndex].Equals (
 ComboBox2.Items.Objects [ComboBox2.ItemIndex]),
 True));

Marco Cantù, Delphi 2009 Handbook

220 - Chapter 7: More Language and RTL Changes

 Log ('Reference = ' + BoolToStr (
 ComboBox1.Items.Objects [ComboBox1.ItemIndex] =
 ComboBox2.Items.Objects [ComboBox2.ItemIndex],
 True));
end;

Here are some of the results:
Comparing ao1 and ao4
Equals: False
Reference = False
Comparing ao2 or ao3 and ao2 or ao3
Equals: True
Reference =: True
Comparing ao2 or ao3 and ao4
Equals: True
Reference =: False

The program has another button used to test some of these methods for the
button itself:
procedure TFormSystemObject.btnTestClick(
 Sender: TObject);
var
 btn2: TButton;
begin
 btn2 := btnTest;
 Log ('Equals: ' +
 BoolToStr (btnTest.Equals (btn2), True));
 Log ('Reference = ' +
 BoolToStr (btnTest = btn2, True));
 Log ('GetHashCode: ' +
 IntToStr (btnTest.GetHashCode));
 Log ('ToString: ' + btnTest.ToString);
end;

The output is the following (with a hash value that might change upon exe-
cution):
Equals: True
Reference = True
GetHashCode: 28253904
ToString: TButton

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 221

TObject Class Summary
As a summary104, this is the complete interface of the TObject class in
Delphi 2009 (notice the different string data types used):
type
 TObject = class
 constructor Create;
 procedure Free;
 class function InitInstance(Instance: Pointer):
 TObject;
 procedure CleanupInstance;
 function ClassType: TClass; inline;
 class function ClassName: string;
 class function ClassNameIs(const Name: string):
 Boolean;
 class function ClassParent: TClass;
 class function ClassInfo: Pointer;
 class function InstanceSize: Longint; inline;
 class function InheritsFrom(AClass: TClass): Boolean;
 class function MethodAddress(
 const Name: ShortString): Pointer; overload;
 class function MethodAddress(const Name: string):
 Pointer; overload;
 class function MethodName(Address: Pointer): string;
 function FieldAddress(const Name: ShortString):
 Pointer; overload;
 function FieldAddress(const Name: string):
 Pointer; overload;
 function GetInterface(const IID: TGUID; out Obj):
 Boolean;
 class function GetInterfaceEntry(const IID: TGUID):
 PInterfaceEntry;
 class function GetInterfaceTable: PInterfaceTable;
 class function UnitName: string;
 function Equals(Obj: TObject): Boolean; virtual;
 function GetHashCode: Integer; virtual;
 function ToString: string; virtual;
 function SafeCallException(ExceptObject: TObject;
 ExceptAddr: Pointer): HResult; virtual;
 procedure AfterConstruction; virtual;
 procedure BeforeDestruction; virtual;

104 Another set of changes affects the internal layout of the class reference data in Delphi
2009. For example, the vmtParent location was -36 in previous versions, but is -48
in Delphi 2009. If you use the symbolic vmt entries, your code will compile un-
changed, but if you used the equivalent numeric locations you'll likely get into
trouble.

Marco Cantù, Delphi 2009 Handbook

222 - Chapter 7: More Language and RTL Changes

 procedure Dispatch(var Message); virtual;
 procedure DefaultHandler(var Message); virtual;
 class function NewInstance: TObject; virtual;
 procedure FreeInstance; virtual;
 destructor Destroy; virtual;
 end;

Overloaded methods like MethodAddress and FieldAddress can take
either a UnicodeString (UTF-16, as usual) or a ShortString parameter that
is treated as a UTF-8 string. In fact, the versions taking a plain Unicode
string, convert them by calling the function UTF8EncodeToShortString:
function TObject.FieldAddress(
 const Name: string): Pointer;
begin
 Result := FieldAddress(UTF8EncodeToShortString(Name));
end;

Unicode and Class Names
Internally, the class names in Delphi 2009 use the ShortString type but with
an UTF-8 encoding (and not the standard ANSI encoding of the ShortString
type), both at the TObject and RTTI levels. For example, the ClassName
method is now implemented as:
class function TObject.ClassName: string;
begin
 Result := UTF8ToString (
 PShortString (PPointer (
 Integer(Self) + vmtClassName)^)^);
end;

In Delphi 2007 this same method was identical except for the
UTF8ToString call. Similarly in the TypInfo unit, all the functions accessing
class names convert the internal UTF-8 ShortString representations to a
UnicodeString. For example:
function GetTypeName(TypeInfo: PTypeInfo): string;
begin
 Result := UTF8ToString(TypeInfo^.Name);
end;

Something similar happens for property names, with most TypInfo func-
tions calling the new InternalGetPropInfo function, declared as:
function InternalGetPropInfo(TypeInfo: PTypeInfo;
 const PropName: UTF8String): PPropInfo;

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 223

Changes in Threading Support
We have already seen in Chapter 6, and in particular in the section “Thread
Synchronization with the VCL” that the TThread has been extended to take
advantage of anonymous methods. The extensions take the form of new
overloaded versions of the Synchronize and Queue methods, so existing
Delphi code should work smoothly.

Another new feature of Delphi 2009 is the presence of the TMonitor
record105, a data structure defined in the System unit that you can use to
provide synchronous access to any object. This monitor support, which
resembles the corresponding class of the .NET framework, let's you define a
thread lock tied to a specific object. Rather than having a global synchroniz-
ation semaphore, you can set one for each control to which you want to
allow concurrent access, letting a thread at a time use it.

In other words, the TMonitor record grants a lock for an object to a single
thread. However, multiple threads can work on different objects at the same
time. To acquire a lock on an object you can call the Enter or the TryEnter
methods, while you release the lock (generally in a finally block) using the
Exit method. The TMonitor record in Delphi support locks and also condi-
tional variables, though the Wait, Pulse, and PulseAll methods, a
complex topic I decided not to cover with an example, but focus only on a
simpler scenario.

The ListMonitor example has a form with three list boxes and multiple
threads accessing those lists in a random way. Each thread operation is ficti-
tiously slow (thanks to a call to Sleep), but other threads interested in using
the list box will have to wait.

The thread class used by the program has the core code, which writes a
starting and a stopping message to the list, waiting in between. This code
code is protected with a TMonitor connected to the given list object, to
avoid any other thread using the list before the first thread is finished:

105 The TMonitor record is defined in the System unit. This is important to know, as it
is very easy to have conflicts with the TMonitor class, defined in the Forms unit. If
your unit refers to Forms, in fact, there is no way you can list System after it, as Sys-
tem is invariably the first unit referenced by any other unit. In other words, you'll of-
ten have to write System.TMonitor to refer to the record. Even if it was named
after its .NET counterpart, I find this choice quite confusing.

Marco Cantù, Delphi 2009 Handbook

224 - Chapter 7: More Language and RTL Changes

type
 TAddToListThread = class(TThread)
 protected
 procedure Execute; override;
 end;

procedure TAddToListThread.Execute;
var
 aList: TListBox;
 I: Integer;
begin
 while not Terminated do
 begin
 aList := Application.MainForm.FindComponent (
 'ListBox' + IntToStr (GetTickCount mod 3 + 1))
 as TListBox;
 System.TMonitor.Enter (aList);
 try
 aList.Items.Add(IntToStr (GetCurrentThreadID) +
 ' starting: ' + TimeToStr (Now));
 // wait loop, omitted
 aList.Items.Add(IntToStr (GetCurrentThreadID) +
 ' stopping: ' + TimeToStr (Now));
 finally
 System.TMonitor.Exit (aList);
 end;
 end;
end;

As I mentioned earlier, the test program for this thread class has three list
boxes, added to a list as the program starts, plus a list of threads (notice I'm
using generic collections in both cases):
procedure TFormListMonitor.FormCreate(Sender: TObject);
begin
 fThreads := TObjectList<TThread>.Create;
 fListBoxes := TList<TListBox>.Create;
 fListBoxes.Add (ListBox1);
 fListBoxes.Add (ListBox2);
 fListBoxes.Add (ListBox3);
end;

The threads are added to the list, three at time, when a buttons is pressed:
procedure TFormListMonitor.btnStartThreadsClick(
 Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 3 do
 fThreads.Add (TAddToListThread.Create (False));

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 225

end;

The other button is used to check the lock on the list objects, using the
TryEnter call and bailing out immediately when the object is available:
procedure TFormListMonitor.btnStatusClick(
 Sender: TObject);
var
 aListBox: TListBox;
begin
 for aListBox in fListBoxes do
 begin
 if System.TMonitor.TryEnter(aListBox) then
 try
 aListBox.Items.Add('Available');
 finally
 System.TMonitor.Exit(aListBox);
 end;
 end;
end;

This is a sample of the output, in which you can notice that the starting and
stopping messages are always paired by thread:

Marco Cantù, Delphi 2009 Handbook

226 - Chapter 7: More Language and RTL Changes

Building Strings
We have seen that the advent of multiple string types causes potential pit-
falls in string concatenation (see section “Assigning and Converting Strings”
in Chapter 2 and the section “String Operations That Fail or Slow Down” in
Chapter 3). Combining these issues with the desire to have unified Win32
and .NET code whenever possible, it is no surprise that CodeGear took an
idea from .NET and added it to the native RTL. The idea being a specific
class to create a string by adding multiple elements of various data types.
Called StringBuilder in .NET, the class has appropriately been renamed
TStringBuilder in Delphi.

As a simple example of the use of the TStringBuilder class, consider the
following code snippet (taken from the StringBuilder project)
var
 sBuilder: TStringBuilder;
 str1: string;
begin
 sBuilder := TStringBuilder.Create;
 try
 sBuilder.Append(12);
 sBuilder.Append('hello');
 str1 := sBuilder.ToString;
 finally
 sBuilder.Free;
 end;
end;

Notice in the code the use of a try-finally block, as unlike a reference-
counted string you have to remember to dispose the TStringBuilder
object. Another element you can notice above is that there are many differ-
ent data types that you can pass as parameters to the Append function. A
complete list will show up in the editor thanks to Code Completion, as you
can see in the following image:

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 227

Other interesting methods of the TStringBuilder class include an
AppendFormat (with an internal call to Format) and an AppendLine that
adds the sLineBreak value. Along with Append, there is a corresponding
series of Insert overloaded methods, as well as a Remove and a few
Replace methods.

When you are done, you can use ToString to fetch the result of the various
operations, but also check the Length or access to individual Chars by
index. Notice, though that the semantics of the Chars method is different
from that of the string[] operation. The former uses a 0-based index
while the standard Delphi code uses a 1-based index. As a test, consider this
method (part of the StringBuilder demo):
procedure TFormSBuilder.btnCharPosClick(Sender: TObject);
var
 str1: string;
 sBuilder: TStringBuilder;
begin
 str1 := '1234567890';
 Log ('str1[4]: ' + str1[4]);
 sBuilder := TStringBuilder.Create (str1);
 try
 Log ('sBuilder.Chars[4]: ' + sBuilder.Chars[4]);
 finally
 sBuilder.Free;
 end;
end;

Marco Cantù, Delphi 2009 Handbook

228 - Chapter 7: More Language and RTL Changes

In output of this code you'll get the 4th character (using the direct access)
and the 5th one (using the Chars property):
str1[4]: 4
sBuilder.Chars[4]: 5

I understand the desire of making this class compatible with its .NET coun-
terpart, but this difference in character access seems counterintuitive.

Methods Chaining in StringBuilder
A very specific feature of the TStringBuilder class is that most methods
are functions that return the current object. This coding idiom opens up the
possibility of methods chaining106, that is calling a method on the object
returned by the previous one. Instead of writing:
 sBuilder.Append(12);
 sBuilder.AppendLine;
 sBuilder.Append('hello');

you can write:
 sBuilder.Append(12).AppendLine.Append('hello');

which can be formatted as:
 sBuilder.
 Append(12).
 AppendLine.
 Append('hello');

I tend to like this syntax better than the original one, but I know it is just
syntactic sugar and some people do prefer the original version with the
object spelled out on each line. In any case, keep in mind that the various
calls to Append don't return new objects (so no potential memory leaks), but
the exact same object to which you are applying the methods.

106 On methods chaining (and other techniques helping in writing Domain Specific Lan-
guages with Delphi) you can see my blog at:
http://blog.marcocantu.com/blog/static_internal_dsl_delphi.html.

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 229

The Speed of Building Strings
Needless to say that most Delphi developers will immediately wonder if
using the TStringBuilder class would make their code faster or slower
than using plain string concatenation or other string operations. The short
answer is that performance is similar, with a slight advantage for the classic
string concatenation, although real-world situations probably differ from
the simple tests I've performed in the StringBuilder example.

I've done three different tests: plain string concatenation, adding Integers to
a string, inserting a string within another string (which is much slower and
executed a fraction of the times). The complete listing is in the example,
here are the key lines of the 6 methods (excluding the statements used to
create and free the TStringBuilder objects):
// 1a. string concatenation
for I := 1 to MaxLoop do
 str1 := str1 + str2;

// 1b. appending strings
for I := 1 to MaxLoop do
 sBuilder.Append(str2);

// 2a. concatenating numbers
for I := 1 to MaxLoop do
 str1 := str1 + IntToStr (I);

// 2b. appending numbers
for I := 1 to MaxLoop do
 sBuilder.Append(I);

// 3a. inserting in string
for I := 1 to MaxLoop div 100 do
 Insert('hello', str1, 7); // 1-based position

// 3b. inserting in string builder
for I := 1 to MaxLoop div 100 do
 sBuilder.Insert (6, 'hello'); // 0-based position
// 4a. character concatenation
for I := 1 to MaxLoop do
 str1 := str1 + ch;

// 4b. appending a character
for I := 1 to MaxLoop do
 sBuilder.Append(ch);

Marco Cantù, Delphi 2009 Handbook

230 - Chapter 7: More Language and RTL Changes

If you execute this program (eventually changing the MaxLoop constant to
try out with happens with smaller and larger strings), you'll get a result
along these lines:
1a. Concatenation: 78
1b. TStringBuilder: 109

2a. Concatenation: 265
2b. TStringBuilder: 359

3a. Concatenation: 156
3b. TStringBuilder: 156

4a. Char Concat: 93
4b. TStringBuilder: 31

As I mentioned at the beginning, the values are very close, with some
advantage for plain string concatenation, with the only exception being the
concatenation or appending of individual characters. The reason is that
when you add a single character, the overloaded version of Append you are
executing is specifically optimized, while the generic concatenation code
treats the character as a single-character string anyway. The insert opera-
tions take almost the same amount of time.

The reason for the difference in case of the string concatenation depends on
the fact that the code executed behind the scenes for the plain concatenation
is lower level optimized assembly code. On the other hand, the
TStringBuilder class tends to reduce memory allocations, as it prealloc-
ates extra memory: Every time the object needs more memory, its
ExpandCapacity method doubled the current capacity. This can consume
more memory than needed, but reduces the number of allocations (and
potential copy operations).

To verify how the allocation works, I've added a btnCapacityClick
method to the StringBuilder demo, which displays how the Length and
Capacity of a TStringBuilder object grow while it is being expanded:
for J := 1 to 10 do
begin
 for I := 1 to 200 do
 sBuilder.Append (I);
 Log ('Len/Cap: ' + IntToStr (sBuilder.Length) +
 ':' + IntToStr (sBuilder.Capacity));
end;

This is the output, in which you can notice the doubling of the capacity
whenever extra memory is needed:

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 231

Len/Cap: 492:512
Len/Cap: 984:1024
Len/Cap: 1476:2048
Len/Cap: 1968:2048
Len/Cap: 2460:4096
Len/Cap: 2952:4096
Len/Cap: 3444:4096
Len/Cap: 3936:4096
Len/Cap: 4428:8192
Len/Cap: 4920:8192

Even if speed increments by using TStringBuilder versus plain string
concatenation are not always significant, the new class tends to make code
more flexible and easier to write, so I recommend switching your existing
code to use it whenever possible107.

Porting a Delphi for .NET Example
As a test of the source code compatibility of Delphi's TStringBuilder class
with .NET's StringBuilder class, I've taken another example that I had
written in Delphi for .NET for the “Mastering Delphi 2005” book and con-
verted it to a VCL application.

The program had two radio buttons to pick a string of different size, a list
box for the output, and two buttons to process the strings with either a
TStringBuilder or a plain string. Simply by defining a type alias for
TStringBuilder called StringBuilder, the core of the method compiles
without a single change:
 // actual code
 strB := StringBuilder.Create;
 if rbShort.Checked then
 strB.Append (strSampleShort)
 else
 strB.Append (strSampleLong);

 for I := 1 to maxCount do
 begin
 nPos := I mod strB.Length;
 strB.Remove(nPos, 1);
 strB.Insert(nPos, strB [(I*2) mod strB.Length]);
 end;

107 For more ideas on this issue, see also my blog post “Not so fast, TStringBuilder” at:
http://blog.marcocantu.com/blog/not_so_fast_tstringbuilder.html.

Marco Cantù, Delphi 2009 Handbook

232 - Chapter 7: More Language and RTL Changes

 ListBox1.Items.Add (strB.ToString);
 // end of actual code

All I had to do was to remember to add a call to Free, as we are not on a ref-
erence counted platform like .NET. The string processing code, instead, is
totally different between Delphi Win32 and the .NET FCL version, so I had
to rewrite it entirely. What is interesting to notice is that in this code which
keeps removing and inserting data in the string, the TStringBuilder-
based code is noticeably faster:
btnSBuilderClick: 00.112
btnStringClick: 00.246

Unlike in .NET (where strings are immutable and direct string operations
are terribly slow) using a shorter or longer string makes almost no differ-
ence, but I've left the radio buttons and the related string constants in the
code to keep it as close as possible to the original.

Using Readers and Writers
A totally alternative approach for building large strings or writing to and
reading from streams is to use the new reader and writer classes introduced
in Delphi 2009, again mapped to their .NET counterparts.

In Delphi there have traditionally been a couple of similar classes (TReader
and TWriter) but they are specifically aimed at streaming properties in and
out of DFM files. The new classes, instead, are better suited for more gen-
eral approaches and are focused on reading and writing textual data.

There are four new reading and writing classes, defined in the Classes unit:

● TStringReader and TStringWriter work on a string in memory
(directly or using a TStringBuilder)

● TStreamReader and TStreamWriter work on a generic stream (a
file stream, a memory stream, and more)

These four classes inherit from the TTextReader and TTextWriter
abstract base classes, which provide the interface to a list of operations.
Each of the readers implements a few basic reading techniques:
function Read: Integer; overload;
function Read(const Buffer: TCharArray;
 Index, Count: Integer): Integer; overload;

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 233

function ReadBlock(const Buffer: TCharArray;
 Index, Count: Integer): Integer;
function ReadLine: string;
function ReadToEnd: string;

Each of the writers has two sets of overloaded operations without (Write)
and with (WriteLine) an end-of-line separator. Here is the first set:
procedure Write(Value: Boolean); overload;
procedure Write(Value: Char); overload;
procedure Write(const Value: TCharArray); overload;
procedure Write(Value: Double); overload;
procedure Write(Value: Integer); overload;
procedure Write(Value: Int64); overload;
procedure Write(Value: TObject); overload;
procedure Write(Value: Single); overload;
procedure Write(const Value: string); overload;
procedure Write(Value: Cardinal); overload;
procedure Write(Value: UInt64); overload;
procedure Write(const Format: string;
 Args: array of const); overload;
procedure Write(Value: TCharArray;
 Index, Count: Integer); overload;

In the current implementations the write operations transform their content
to a string, before writing it (this is different from Delphi's original TReader
and TWriter, which can also work with binary data).

For writing to a stream, the TStreamWriter class uses a stream or creates
one using the filename and the encoding passed as parameters. So we can
write, as I did in the ReaderWriter demo:
var
 sw: TStreamWriter;
begin
 sw := TStreamWriter.Create('test.txt',
 False, TEncoding.UTF8);
 try
 sw.WriteLine ('Hello, world');
 sw.WriteLine ('Have a nice day');
 sw.WriteLine (Left);
 finally
 sw.Free;
 end;

For reading the TStreamReader, you can work again on a stream or a file
(in which case it can detect the encoding from the BOM):
var
 sr: TStreamReader;
begin

Marco Cantù, Delphi 2009 Handbook

234 - Chapter 7: More Language and RTL Changes

 sr := TStreamReader.Create('test.txt', True);
 try
 while not sr.EndOfStream do
 Memo1.Lines.Add (sr.ReadLine);
 finally
 sr.Free;
 end;

Notice how you can check for the EndOfStream status. Compared to the
classic Delphi code used for writing and reading a string to and from a
string, passing as untyped parameter the first character of the string
(str[1], below), the readability is much improved. This is a snippet of the
classic code as a comparison:
var
 fstr: TFileStream;
 str: string;
begin
 fstr := TFileStream.Create (test.txt', fmCreate);
 try
 str := 'Hello, world';
 fstr.Write(str[1], Length (str));
 finally
 fstr.free;
 end;

For writing to an in-memory string you can use a specific stream class or use
the TStringWriter class, which uses either a TStringBuilder object
passed to its constructor or creates an internal one. At the end you can ask
for the complete string. The TStringReader works on a string passed as
parameter to its only constructor, but it has no easy way to detect the end of
the string. The only ready-to-use solution I've found (without extending the
class) has been to see if the Peek call returns any value. The following event
handler (again from the ReaderWriter application) fills a string in memory
with a writer and than reads it back:
procedure TFormReaderWriter.btnWriteAndReadClick(
 Sender: TObject);
var
 sw: TStringWriter;
 sr: TStringReader;
 theString: string;
begin
 sw := TStringWriter.Create;
 try
 sw.WriteLine ('Hello, world');
 sw.WriteLine ('Have a nice day');
 sw.WriteLine (Left);

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 235

 theString := sw.ToString;
 finally
 sw.Free;
 end;
 sr := TStringReader.Create(theString);
 try
 while sr.Peek <> -1 do
 Memo1.Lines.Add (sr.ReadLine);
 finally
 sr.Free;
 end;
end;

Compared to a direct use of streams (or strings), these classes are particu-
larly handy to use, and provide good performance. When you have to create
a very large string with data (say an external XML file) using a stream with a
proper writer can provide you with top notch performance.

Another interesting element, is that having a standard interface available,
you can write algorithms or classes that work with the two abstract classes,
TTextReader and TTextWriter, and can be used for working on strings or
in memory streams. As an example of this approach I've written an extreme-
ly simplified XML writer class, that doesn't inherit from TTextWriter but
rather encapsulates it. This is the class definition, available in the Reader-
Writer project:
type
 TTrivialXmlWriter = class
 private
 fWriter: TTextWriter;
 fNodes: TStack<string>;
 public
 constructor Create (aWriter: TTextWriter);
 destructor Destroy; override;
 procedure WriteStartElement (const sName: string);
 procedure WriteEndElement;
 procedure WriteString (const sValue: string);
 end;

Internally the class uses a stack of strings to keep track of the XML elements
that have been opened and not closed yet, providing a semi-automatic close
in the WriteEndElement method:
procedure TTrivialXmlWriter.WriteStartElement(
 const sName: string);
begin
 fWriter.Write('<' + sName + '>');
 fNodes.Push (sname);
end;

Marco Cantù, Delphi 2009 Handbook

236 - Chapter 7: More Language and RTL Changes

procedure TTrivialXmlWriter.WriteEndElement;
begin
 fWriter.Write('</' + fNodes.Pop + '>');
end;

This is a example of how the class can be used, by populating a
TStringWriter (the actual code of the demo is slightly longer):
procedure TFormReaderWriter.btnXmlCorrectClick(
 Sender: TObject);
var
 sw: TStringWriter;
 txw: TTrivialXmlWriter;
 theString: string;
begin
 sw := TStringWriter.Create;
 try
 txw := TTrivialXmlWriter.Create (sw);
 try
 txw.WriteStartElement('book');
 txw.WriteStartElement('title');
 txw.WriteString('Delphi 2009 Handbook');
 txw.WriteEndElement;
 txw.WriteEndElement;
 finally
 txw.Free;
 end;
 theString := sw.ToString;
 finally
 sw.Free;
 end;
 Memo1.Lines.Text := theString;
end;

To make the class slightly more interesting, the destructor takes care of clos-
ing all XML nodes that were left open (although it could as well raise an
error, in case such a situation occurs).

Exception(al) Enhancements
Along with TObject, another core Delphi class that has seen a couple of sig-
nificant improvements in Delphi 2009 is the Exception class. On one side,
there is a new virtual function that is called after an exception object has
been created, but before it is raised. On another side, there is now support

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 237

for nested (or inner) exceptions. Finally, but this is not so important, there
are some new exception classes in the SysUtils unit.

The InnerException Mechanism
What happens if you raise an exception within an exception handler? The
traditional Delphi answer is that new exception will replace the existing one,
which is why it is a common practice to combine at least the error messages,
writing code like this (lacking any actual operation, and showing only the
exceptions-related statements):
procedure TFormExceptions.ClassicReraise;
begin
 try
 // do something...
 raise Exception.Create('Hello');
 except on E: Exception do
 // try some fix...
 raise Exception.Create('Another: ' + E.Message);
 end;
end;

This code is part of the ExceptionsTest example. When calling the method
and handling the exception, you'll see a single exception with the combined
message:
procedure TFormExceptions.btnTraditionalClick(
 Sender: TObject);
begin
 try
 ClassicReraise;
 except
 on E: Exception do
 Log ('Message: ' + E.Message);
 end;
end;

The (quite obvious) output is:
Message: Another: Hello

To make exceptions a little more flexible in case of database-related opera-
tions, since the early days of the BDE Delphi introduced the idea of a
DBError exception with a list of internal error codes, but this is not very
flexible. Now in Delphi 2009, to increase .NET compatibility and to improve

Marco Cantù, Delphi 2009 Handbook

238 - Chapter 7: More Language and RTL Changes

exception handling in the dbExpress framework108, there is now system-
wide support for nested exceptions.

Within an exception handler, you can create and raise a new exception and
still keep the current exception object alive, connecting it to the new excep-
tion. To accomplish this, the Exception class has a new InnerException
property, referring to the previous exception, and a BaseException prop-
erty that let's you access the first exception of a series, as exception nesting
can recursive. These are the new elements of the Exception class related to
the management of nested exceptions, plus a couple of other new methods
like the destructor and ToString109:
type
 Exception = class(TObject)
 private
 FInnerException: Exception;
 FAcquireInnerException: Boolean;
 protected
 procedure SetInnerException;
 public
 destructor Destroy; override;
 function GetBaseException: Exception; virtual;
 function ToString: string; override;
 property BaseException: Exception
 read GetBaseException;
 property InnerException: Exception
 read FInnerException;
 class procedure RaiseOuterException(
 E: Exception); static;
 class procedure ThrowOuterException(
 E: Exception); static;
 end;

From the perspective of a user, to raise an exception preserving the existing
one you should call the RaiseOuterException class method (or the
identical ThrowOuterException, which uses C++-oriented naming). When
you handle a similar exception you can use the new properties to access fur-

108 The reason I connect this new feature to the dbExpress framework is simple: the
DBXCommon and the DBXPlatform units are currently the only two units of the VCL
(for Win32) referring to the InnerException property.

109 I've omitted from this listing of the Exception class other new features compared to
Delphi 2007, like the new class data function pointers you can use to hook into ex-
ception stack tracing (an advanced topic I won't cover in the book) and the new
RaisingException method detailed in the next section.

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 239

ther information. Notice that you can call RaiseOuterException only
within an exception handler as the source code-based documentation tells:

Use this function to raise an exception instance from within an
exception handler and you want to "acquire" the active exception
and chain it to the new exception and preserve the context. This
will cause the FInnerException field to get set with the exception
in currently in play.

You should only call this procedure from within an except block
where this new exception is expected to be handled elsewhere.

As an actual example you can refer to the ExceptionsTest project. In this
project I've added a method that raises a nested exception in the new way
(compared to the ClassicReraise method listed earlier):
procedure TFormExceptions.MethodWithNestedException;
begin
 try
 raise Exception.Create ('Hello');
 except
 Exception.RaiseOuterException (
 Exception.Create ('Another'));
 end;
end;

Now in the handler for this outer exception we can access both exception
objects (and also see the effect of calling the new ToString method):
 try
 MethodWithNestedException;
 except
 on E: Exception do
 begin
 Log ('Message: ' + E.Message);
 Log ('ToString: ' + E.ToString);
 if Assigned (E.BaseException) then
 Log ('BaseException Message: ' +
 E.BaseException.Message);
 if Assigned (E.InnerException) then
 Log ('InnerException Message: ' +
 E.InnerException.Message);
 end;
 end;

The output of this call is the following:
Message: Another
ToString: Another
Hello

Marco Cantù, Delphi 2009 Handbook

240 - Chapter 7: More Language and RTL Changes

BaseException Message: Hello
InnerException Message: Hello

There are two relevant elements to notice. The first is that in the case of a
single nested exception the BaseException property and the
InnerException property both refer to the same exception object, the ori-
ginal one. The second is that while the message of the new exception
contains only the actual message, by calling ToString you get access to the
combined messages of all the nested exceptions, separated by an
sLineBreak (as you can see in the code of the method Exception.
ToString). The choice of using a line break in this case produces an odd
output, but once you know about it you can format it the way you like, repla-
cing the line breaks with a symbol of your choice or assigning them to the
Text property of a string list.

As a further example, let me show you what happens when raising two nes-
ted exceptions. This is the new method:
procedure TFormExceptions.MethodWithTwoNestedExceptions;
begin
 try
 raise Exception.Create ('Hello');
 except
 begin
 try
 Exception.RaiseOuterException (
 Exception.Create ('Another'));
 except
 Exception.RaiseOuterException (
 Exception.Create ('A third'));
 end;
 end;
 end;
end;

This called is a method that is identical to the one we saw previously and
produces the following output:
Message: A third
ToString: A third
Another
Hello
BaseException Message: Hello
InnerException Message: Another

This time the BaseException property and the InnerException property
refer to different objects and the output of ToString spans three lines.

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 241

Preprocessing Exceptions
One of the features of the Exception class is a new protected virtual func-
tion, declared as:
procedure RaisingException(P: PExceptionRecord); virtual;

According to the documentation (that is, a comment in the source code, not
the online help):

This virtual function will be called right before this exception is
about to be raised. In the case of an external non-Delphi exception,
this is called soon after the object is created since the "raise" condi-
tion is already in progress.

The implementation of the function in the Exception class manages the
inner exception (by calling the internal SetInnerException), which prob-
ably explains why it was introduced in the first place, at the same time as the
inner exception mechanism.

In any case, now that we have this feature available we can take advantage of
it. By overriding this method, in fact, we have a single post-creation function
that is invariably called, regardless of the constructor used to create the
exception. In other words, you can avoid defining a custom constructor for
your exception class and let users call one of the many constructors of the
base Exception class, and still have a custom behavior. As an example, you
can log any exception of a given class (or subclass).

This is a custom exception class (defined again in the ExceptionsTest
example) that overrides the RaisingException method:
type
 ECustomException = class (Exception)
 protected
 procedure RaisingException(
 P: PExceptionRecord); override;
 end;

procedure ECustomException.
 RaisingException(P: PExceptionRecord);
begin
 // log exception information (to file would be smarter!)
 FormExceptions.Log('Exception Addr: ' + IntToHex (
 Integer(P.ExceptionAddress), 8));
 FormExceptions.Log('Exception Mess: ' + Message);

 // modify the message

Marco Cantù, Delphi 2009 Handbook

242 - Chapter 7: More Language and RTL Changes

 Message := Message + ' (filtered)';

 // standard processing
 inherited;
end;

What this method implementation does is to log some information about
the exception, modify the exception message and than invoke the standard
processing of the base classes (needed for the nested exception mechanism
to work). The method is invoked after the exception object has been created
but before the exception is raised. This can be noticed because the output
produced by the Log calls is generated before the exception is caught by the
debugger! Similarly, if you put a breakpoint in the RaisingException
method, the debugger will stop there before catching the exception.

New Exception Classes
Another new feature of exceptions is the availability of a few new specific
exception classes available globally (as they are defined in the SysUtils unit):
type
 EArgumentException = class(Exception);
 EArgumentOutOfRangeException =
 class(EArgumentException);
 ENoConstructException = class(Exception);
 EMonitor = class(Exception);
 EMonitorLockException = class(EMonitor);
 ENoMonitorSupportException = class(EMonitor);
 EProgrammerNotFound = class(Exception);

The last of these new exception classes, EProgrammerNotFound, seems
more like a joke and is never used in the VCL source code. I can think of
some funny ways110 of using it, though.

110 I have a long tradition in giving talks about the “Fun Side of Delphi”, as you can see
on my web site at the address http://www.marcocantu.com/funside.

Marco Cantù, Delphi 2009 Handbook

Chapter 7: More Language and RTL Changes - 243

Summary of New Units and New
RTL Classes

With all of the classes of the RTL introduced to support Unicode and gener-
ics, plus many extra features, it is easy to miss some of the changes. For this
reason, at the end of the coverage of the run time library (which was only
partially done in this chapter) it is worth having an overall look at the new
units and classes of the RTL. I haven't listed global routines, as this would
have been a huge task. The following are the new units of the run time lib-
rary, with the list of the classes they define, if any:

AnsiStrings (no classes)

Character TCharacter

Generics.Collection TArray
TEnumerator<T>
TEnumerable<T>
TList<T>
TQueue<T>
TStack<T>
TDictionary<TKey,TValue>
TObjectList<T>
TObjectQueue<T>
TObjectStack<T>
TObjectDictionary<TKey,TValue>

Generics.Default TComparer<T>
TEqualityComparer<T>
TSingletonImplementation
TDelegatedEqualityComparer<T>
TDelegatedComparer<T>
TCustomComparer<T>
TStringComparer

The following are the new Delphi 2009 classes (or records with methods)
that have been added to existing RTL units. Notice in particular that there
are now classes in the SysUtils unit (and not only in the Classes unit), while
the System unit adds two records with methods. Here is the list:

Classes TBytesStream
TTextReader
TTextWriter
TStringReader

Marco Cantù, Delphi 2009 Handbook

244 - Chapter 7: More Language and RTL Changes

TStringWriter
TStreamWriter
TStreamReader

SyncObjs TSemaphore
TConditionVariableMutex
TConditionVariableCS

System TMonitor

SysUtils TStringBuilder
TEncoding
TMBCSEncoding
TUTF7Encoding
TUTF8Encoding
TUnicodeEncoding
TBigEndianUnicodeEncoding

ZLib TCustomZStream

More and Less FastCode
Over the last few versions of Delphi, CodeGear has borrowed (in a way that
is compliant with the original license) several routines from the FastCode
project111. Now, although these routines are still in the product, most of them
related to string management and are not in the new AnsiStrings unit, and
are probably not going to be used as much as the corresponding Uni-
codeString routines. On the plus side, for FastCode integration, there is a
new optimized version of the RoundTo in function in the Math unit.

What's Next
This chapter on assorted compiler changes and new features of the Delphi
run time library completes the second part of the book, focused on the IDE
and the compiler. The third part of the book will be focused on the VCL,
including new features in supporting Vista, the Ribbon user interface, trans-
lation support, and COM support. After that it will cover database
programming and multi-tier database applications.

111 See http://www.fastcodeproject.org for more details on the FastCode project and its
current status (last time I checked activity was quite low).

Marco Cantù, Delphi 2009 Handbook

Part III: VCL and Databases - 245

Part III: VCL And
Databases

Most of the “Delphi experience” relates to its key library, the Visual Com-
ponent Library, and in particular its subset focused on database
development, including client/server and 3-tier architectures. Many visual
controls and some of the database access components have received a signi-
ficant update in Delphi 2009, and are the subject of the third part of the
book, which covers also COM, the new Ribbon control, and the new Data-
Snap 2009 multi tier architecture.

● Chapter 8: VCL Improvements

● Chapter 9: COM Support in Delphi 2009

● Chapter 10: The Ribbon

● Chapter 11: Datasets and dbExpress

● Chapter 12: DataSnap 2009

Marco Cantù, Delphi 2009 Handbook

246 - Part III: VCL and Databases

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 247

Chapter 8: VCL
Improvements

While maybe not as significant as Unicode support or other compiler
changes, the VCL in Delphi 2009 sees a number of small but important
improvements (some of which have been requested for a long time by
Delphi users). In this chapter I'll focus on some assorted improvements and
new controls, while the one after next is dedicated to the new Ribbon com-
ponent.

The VCL is one of the cornerstones of Delphi and its architecture has signi-
ficantly contributed to the success of the tool. Even today, looking at user-
interface frameworks designed after many years by large IT companies, the
VCL stands out considerably112.

112 If you compare the VCL with the WinForms library of the .NET framework or with
leading Java libraries you'll see what I mean. One of the key elements of the VCL, its
strict relationship with the Windows API, though, is also one of its weaknesses, as
porting it outside of the Windows world has proved hard (as the CLX project and, in
part, the VCL for .NET project have demonstrated).

Marco Cantù, Delphi 2009 Handbook

248 - Chapter 8: VCL Improvements

With four brand new components (BalloonHint, ButtonedEdit, CategoryP-
anelGroup, and LinkLabel) plus Ribbon support and countless small
enhancements, the VCL has seen a significant update in Delphi 2009. Some
of these updates are specific for Windows XP or Windows Vista and further
enhance the support for Vista that's in the VCL since Delphi 2007113.

VCL Core Improvements
Beside the various changes and fixes to specific components and controls,
covered in this chapter, there are some improvements made at the core VCL
class level that benefit each and every visual control in the library.

One of these improvements is the addition of the ParentDoubleBuffered
property in the TWinControl class, that makes it easier to enable double
buffering for an entire form or a group of controls. Double buffering is use-
ful in ensuring correct output where a form has a Vista glass surface (using
the GlassFrame property introduced in Delphi 2007) or in other situations
in which a program is performing alpha blending of different images.

For the same reason, the corresponding DoubleBuffered property has now
been published on most controls (more so than in previous versions).

Custom Hints and Balloon Hints
The TControl class introduces a new property, CustomHint, along with its
parent property, ParentCustomHint, which lets child objects share the
value defined by the parent control:
property CustomHint: TCustomHint
 read GetCustomHint write SetCustomHint;
property ParentCustomHint: Boolean
 read FParentCustomHint write SetParentCustomHint
 default True;

This new property let's you hook a custom hint object to any visual compon-
ent, that is an object of any class inheriting from TCustomHint. One such
class, introduced in Delphi 2009, is the TBalloonHint class, a very simple

113 Vista support in the VCL is covered in detail in my “Delphi 2007 Handbook”.

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 249

component that adds very little to what the base TCustomHint class already
provides. The custom hint architecture, though, is more flexible than having
only balloon hint support, as you can add your own custom hint classes and
use them for any control.

What you can use out-of-the-box is a BalloonHint component. Simply place
this non-visual component on a form and hook it to the CustomHint prop-
erty of a control to change the way the hint is displayed. You can see a
BalloonHint component below:

Here are the related settings from the DFM file of the HintsDemo example:
object btnCustomHint: TButton
 Hint = 'This is a hint for the button'
 CustomHint = BalloonHint1
 ShowHint = True
end
object BalloonHint1: TBalloonHint
 Images = ImageList1
end

The BalloonHint component uses the hint provided by the control on to
which it is hooked. As a user moves the mouse over the button, the hint will
be displayed in a much nicer way than in the past:

Using the ParentShowHint and ParentCustomHint properties you can
define this setting on a panel and have balloon hints active on each of the
controls hosted by the panel. For an example, you can see the Panel1 con-
trol of the HintsDemo project.

You might have noticed in the DFM listing above that the BalloonHint com-
ponent has an Images property, but no image is displayed. One way to set
other runtime properties of the BalloonHint component, including the
Title and the ImageIndex, and have a nicer looking hint, is to manually
invoke the hint, for example from the OnMouseEnter event of a control:
procedure TForm30.btnShowHintMouseEnter(Sender: TObject);
begin
 BalloonHint1.Title := 'Hint Title';

Marco Cantù, Delphi 2009 Handbook

250 - Chapter 8: VCL Improvements

 BalloonHint1.ImageIndex := 1;
 BalloonHint1.Description :=
 'This is a hint suggesting what a user would do';
 BalloonHint1.HideAfter := 5000;
 BalloonHint1.ShowHint;
end;

procedure TForm30.btnShowHintMouseLeave(Sender: TObject);
begin
 BalloonHint1.HideHint;
end;

The hint, visible in the image below, will hide after 5 seconds or as soon as
the mouse leaves the control:

As this would require a lot of work, there is another easier way to set the title
and the image index of the custom hint object connected with a control.
Since the early days of Delphi, the Hint property allowed you to specify a
short hint (used as hint) and a longer version (generally for a StatusBar
message) separated by the pipe character (|). Using the custom hint associ-
ation, the Hint property is now interpreted as follows:
title|message|imageindex

So for example, in the HintsDemo project I've customized a button as fol-
lows (the value of the hint is a single string):
object Button3: TButton
 Hint =
 'This is a button|' +
 'This is a longer description for the button, ' +
 'taking some space|2'
 CustomHint = BalloonHint1
 Caption = 'Button3'
end

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 251

Enhancements to Standard
Components

If there are some new features that affect all controls, most of the improve-
ments in the VCL in Delphi 2009 are specific to individual controls. The
core standard controls, as well as the common controls, have been extended
by Microsoft from one version of Windows to the next, while the VCL has
often neglected supporting new these new features of the OS, sometimes for
backward compatibility reasons (as similar applications might have prob-
lems running on older versions of the operating system, that Delphi has now
stopped supporting anyway).

In this section I'll focus on the enhancements of some of the standard core
controls of Windows, like buttons and edit boxes. In the following section I'll
focus on the (more limited) enhancements of common controls.

Buttons Get New Features
You might think that the classic Windows push buttons are well established,
stable controls. That's actually not true. Since Windows XP, you can hook an
image from an image list to a button, and have a graphical bitmap button
without having to derive a custom owner-drawn control as Delphi did since
the early days with the BitBtn (bitmap button) control. In Delphi 2009 you
can now have the same graphical effect with a plain and standard TButton.
Image list support comes through a series of properties you can use to
determine which image to use in each of various states of the button. Here is
the list of the new image-related properties of the TCustomButton class, lis-
ted with only their types:
property DisabledImageIndex: TImageIndex ...
property HotImageIndex: TImageIndex ...
property ImageAlignment: TImageAlignment ...
property ImageIndex: TImageIndex ...
property ImageMargins: TImageMargins ...
property Images: TCustomImageList ...
property PressedImageIndex: TImageIndex ...
property SelectedImageIndex: TImageIndex ...

Marco Cantù, Delphi 2009 Handbook

252 - Chapter 8: VCL Improvements

Since this feature was introduced in the Win32 API in Windows XP, if your
application needs to run on Windows 2000, you should use it with care or
avoid using it altogether.

Similarly, if your program is meant to be running on Vista, you can activate
more new features, like the command link style used by many standard dia-
logs of the operating system and split button styles that let you hook a drop
down menu to the button, which is activated by pressing the small drop
down arrow. The overall layout of the button is determined by the value of
the new Style property of an enumerated type defined as a nested type114 of
the TCustomButton class:
type
 TButtonStyle = (bsPushButton, bsCommandLink,
 bsSplitButton);

There are further properties you can use depending on the selected style:

● With the split button style (in the API, the BS_SPLITBUTTON style
value) you can use the DropDownMenu property (of type
TPopupMenu) and customize it in the OnDropDownClick event.

● In the case of the command link type (the BS_COMMANDLINK style
value in the API) you can use the default icon (a green arrow) or a
specific image (as mentioned earlier) and provide more information
about the action with the new CommandLinkHint string property.

Finally, the ElevationRequired property, applicable both to a standard
button and to a command link one, enables the display of the Windows
shield to be used if the button leads to a UAC protected operation. The
ElevationRequired property sends the BCM_SETSHIELD message to the
button.

Using all of these new properties can affect the layout of your application
quite radically, although you can obtain some of these user interface effects
only if the application runs on Windows Vista (or later versions of the oper-
ating system). These properties are not very complex to use, so rather than
describing the ButtonsDemo example in detail, I'll simply list its key ele-
ments, after showing you the design-time form:

114 Nested types, introduced in Delphi 2006, let you define a type within an existing
type. A nested type is subject to the visibility rules determined by the class hosting it,
and can be private or public. In this case the type TCustomButton.TButtonStyle
is public. Nested types provide a sort of name space, as the full name includes the
outer class. For detailed coverage see, again, the “Delphi 2007 Handbook”.

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 253

This is the summary of the DFM file of the project:
object FormButtonsDemo: TFormButtonsDemo
 object Button1: TButton
 ImageIndex = 0
 Images = ImageList1
 PressedImageIndex = 1
 end
 object Button2: TButton
 ImageIndex = 1
 Images = ImageList1
 PressedImageIndex = 2
 end
 object Button3: TButton
 DropDownMenu = PopupMenu1
 Style = bsSplitButton
 end
 object Button4: TButton
 CommandLinkHint = 'This is a command link hint'
 Style = bsCommandLink
 end
 object Button5: TButton
 CommandLinkHint = 'Another hint'
 ImageIndex = 1
 Images = ImageList1
 Style = bsCommandLink
 end
 object Button6: TButton

Marco Cantù, Delphi 2009 Handbook

254 - Chapter 8: VCL Improvements

 ElevationRequired = True
 Style = bsCommandLink
 end
 object ImageList1: TImageList...
 object PopupMenu1: TPopupMenu...
end

Glowing Labels and LinkLabels
Another classic component that has been extended, mostly with the intro-
duction of a new class representing a modified version of the Microsoft
control, is the TLabel component. The extra feature of this component is
not something you can use in each and every application, as it let's you add a
glow effect on labels painted on a glass frame surface in Windows Vista.

In Delphi this feature is activated using the new GlowSize property of the
TLabel class, which is an Integer you basically use like a Boolean value, as
setting any value above 0 seems to produce exactly the same effect: painting
a one pixel white border around the label115. It is very hard to see the differ-
ence between a standard and a glowing label in the printed screen shot of
the LabelsDemo example (it will be much more clear if you run the demo):

 In the bottom area of the form above you can see two instances of the new
LinkLabel component, a wrapper of the SysLink Windows class. This is a
new control you can use only on Windows XP or later versions (not on Win-

115 The Windows API documentation for the corresponding field of the DTTOPS data
structure used for painting themed controls claims this is “the size of a glow that will
be drawn on the background prior to any text being drawn”, but again in this specific
case the number seems to have no practical effect. Another element that doesn't cor-
respond to the documentation is that you can actually have a glow even when not
painting over the glass surface, even if in this case the visual effect is not as nice.

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 255

dows 2000, where it reverts back to a STATIC control, that is a plain label,
as you can see in TCustomLinkLabel.CreateParams).

You can use the UseVisualStyle property to move from a standard paint-
ing code (like any other label) to a more modern UI, although in the latter
case it looks like the control is ignoring the assigned font. In both cases you
can use the Caption property to specify some text including a hyper link in
HTML format (that is an anchor a with an href attribute: don't try to use
other HTML tags, as they'll be displayed in the text):
object LinkLabel2: TLinkLabel
 Caption = 'A new link to my blog'
 UseVisualStyle = True
 OnLinkClick = LinkLabel1LinkClick
end

As a user clicks on the link, the control will fire the OnLinkClick event
passing the URL as parameter:
procedure TFormLabelsDemo.LinkLabel1LinkClick(
 Sender: TObject; const Link: string;
 LinkType: TSysLinkType);
begin
 ShowMessage ('Link clicked: ' + Link);
end;

You can handle the event and launch the default browser with a
ShellExecute call, passing the complete URL as parameter.

RadioGroup Text Wrapping
The RadioGroup component (the custom combination of a GroupBox with
actual RadioButton controls) gets a single new feature, the support for word
wrapping in the radio buttons they contain.

The drawback in this case is that the component won't be able to calculate
the vertical spacing of the individual items properly, and if you have (say) an
element with three lines of text, it might turn out that the top of the first line
or the bottom of the last line won't be visible.

An example of wrapping and one of the problems it can cause are visible in
the RadioGroupDemo form:

Marco Cantù, Delphi 2009 Handbook

256 - Chapter 8: VCL Improvements

Edits Get Many New Features
The Edit control is another standard and classic control of Windows that
over the years got new features (particularly in Windows XP), which the
VCL failed to surface, even if Delphi programmers could enable them dir-
ectly. Now some of these features116 are easily accessible using new
properties of the TEdit class:

● The Alignment property enables the alignment of text in an edit
control, a feature that was previously available only for DBEdit con-
trols (and implemented in native VCL code, as it wasn't available in
early versions of the Win32 API). Setting Alignment activates the
ES_LEFT, ES_RIGHT, or ES_CENTER Windows styles, eventually
requiring the system to recreate the Edit window (so you should try
to avoid changing this property at runtime once the Edit box has
been displayed).

● The NumbersOnly property sets the ES_NUMBER style of the Edit
control, which requires Windows XP or later. This applies an input
filter that prevents user from typing non-digit keys, but still let's
them paste non-numeric text (and let's the program freely set the
Text property).

116 For a detailed list of the window styles for an Edit control at the API level, see the
SDK documentation at: http://msdn.microsoft.com/en-us/library/bb775464.aspx.

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 257

● The TextHint property supports in-place text hints displayed when
the edit box is empty (again this requires Windows XP or later). The
text hint could act as a replacement for a descriptive label, or rein-
force one providing a call to action for the user.

● The PasswordChar property let's you set a custom password char
(replacing the default asterisks, in Windows XP, or round dots, in
Windows Vista) with a character or symbol of your own choice. This
feature not only requires Windows XP or later but also a themed
application.

These properties are also available in components that relate to the Edit
control, such as the LabeledEdit (a combination of an Edit and a Label) and
the classic MaskEdit control of the VCL. The DBEdit control, instead, does-
n't provide the new features of other edit controls. Actually, to be more
precise, it inherits the new features from the base TCustomEdit class but
doesn't expose them in published properties.

In the following runtime form of the EditFamilyDemo example, you can see
some of these features (and others I'll explain later) in action:

On the left side of the form you can see four edit boxes using some of the
new features. The first has its text right aligned, the second displays a text
hint, the third allows only numeric input, and the fourth uses Unicode
CodePoint 25A0 (Black Square) as its password character. (It is nice that
you can use any Unicode symbol for the password character.)

This is the most relevant portion of the DFM file, describing the properties
of those four controls:

Marco Cantù, Delphi 2009 Handbook

258 - Chapter 8: VCL Improvements

 object edRightAlign: TEdit
 Alignment = taRightJustify
 Text = 'Text on the right'
 end
 object edTextHint: TEdit
 TextHint = 'Your name'
 end
 object edNumber: TEdit
 NumbersOnly = True
 Text = '3'
 end
 object edPassword: TEdit
 PasswordChar = #9632
 Text = 'password'
 end

The button close to the first edit let's you switch the alignment property in a
round robin fashion, by increasing the value of the enumeration and com-
puting the modulus (the remainder of the division) with the highest possible
value:
procedure TFormEditFamily.btnAlignClick(Sender: TObject);
begin
 edRightAlign.Alignment := TAlignment (
 (Ord(edRightAlign.Alignment) + 1) mod
 (Ord(High(TAlignment)) + 1));
end;

A strictly-related117 component, the Memo, has a specific new property,
CharCase, which lets you force the text to lowercase or uppercase. The text
is not just displayed with a given style, but it is actually converted. If you
assign mixed case text to the control and later extract that text, you'll
retrieve the converted version, as the first two lines of the following event
handler demonstrate:
procedure TFormEditFamily.btnUpcaseClick(
 Sender: TObject);
begin
 memoLowercase.Lines.Text := 'Mixed Case Text Added';
 ShowMessage (memoLowercase.Lines.Text);

 memoLowercase.CharCase := ecUpperCase;
 memoLowercase.Lines.Text := 'Cantù';
end;

117 In the Windows API there is no difference between an Edit and a Memo control, as
they are both EDIT controls, initialized with either a single line or a multi line style.

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 259

The first time you press the button, the text in the message box will be
lowercase. The second time it will be uppercase. Even the accented charac-
ter at the end of my last name will be converted to an uppercase accented u.

ComboBoxes and Text Hints
In the Windows API, ComboBoxes have a strict relationship with Edit boxes,
as they got their name (and some of their implementation code) from being
a combination of an Edit and a ListBox. So you should hardly be surprised
to see a TextHint property also added to the TComboBox class, just like the
TEdit class. Again, this feature requires Windows XP or a more modern
version of Windows118.

There is a simple combo box with a text hint in the EditFamilyDemo
example, as you can see in the last image displayed (a couple of pages back).

The New ButtonedEdit Control
A brand new control that extends the behavior of the Edit control is the
ButtonedEdit component, which is a custom VCL control defined in the
ExtCtrls unit. This is basically an edit box that can have small buttons on the
left or right side, used to interact with the edit box itself. For example, you
can add a Cancel button that empties the edit box, and a search or lookup
button that validates the input or looks for some related information.

The Delphi IDE uses this component for the Search option of the Tools
Palette, as you can see below:

118 The internal code used to set up the text hint for a combo box in Windows XP and
Windows Vista is different, but the VCL manages this for you. If you are interested in
the details see the two sections of the method TCustomComboBox.DoSetTextHint
for Windows version 5.1 (XP) and 6 (Vista).

Marco Cantù, Delphi 2009 Handbook

260 - Chapter 8: VCL Improvements

This component, which requires XP or later versions of Windows, includes
all of the new features of the Edit control, like the modern-looking text hint.
Setting up the buttons on the sides of the edit box is quite simple. The com-
ponent has a LeftButton and a RightButton property, of type
TEditButton, defined as:
type
 TEditButton = class(TPersistent)
 published
 property DisabledImageIndex: TImageIndex;
 property DropDownMenu: TPopupMenu;
 property Enabled: Boolean;
 property HotImageIndex: TImageIndex;
 property ImageIndex: TImageIndex;
 property PressedImageIndex: TImageIndex;
 property Visible: Boolean;
 end;

All of the image references are to the ImageList component you can hook to
the ButtonedEdit control. You can attach a method to the click on either
button using the OnLeftButtonClick and OnRightButtonClick events
of the ButtonedEdit control; you can also attach a Popup menu to the but-
tons using the DropDownMenu property of the TEditButton class.

In the ButtonEdits demo I've coded some very simple usage scenarios, just
to give an idea of how you can work with this component. At the same time
showing some of the other new features introduced for edit boxes. The main
form of the example sports three ButtonedEdit controls, two with a single
button and one with two buttons. The controls also have text hints and one
of them has a drop down menu attached. You can see the form at runtime
(with the drop down menu active) in the following image:

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 261

The first control is a numeric edit box with an undo button:
object edUndo: TButtonedEdit
 Images = ImageList1
 NumbersOnly = True
 RightButton.ImageIndex = 0
 RightButton.Visible = True
 TextHint = 'A number'
 OnRightButtonClick = edUndoRightButtonClick
end

The edUndoRightButtonClick event handler calls the Undo method of the
ButtonedEdit control. The second edit control provides two buttons, one for
pasting from the clipboard and the second to clear the edit box content (thus
restoring the text hint):
object edClear: TButtonedEdit
 Images = ImageList1
 LeftButton.ImageIndex = 3
 LeftButton.Visible = True
 RightButton.ImageIndex = 1
 RightButton.Visible = True
 TextHint = 'Some text'
 OnLeftButtonClick = edClearLeftButtonClick
 OnRightButtonClick = edClearRightButtonClick
end

The third edit box has a history button, and keeps track of the text that is
entered in the window, allowing a user to reselect it:
object edHistory: TButtonedEdit
 Images = ImageList1
 RightButton.DropDownMenu = PopupMenu1
 RightButton.ImageIndex = 2
 RightButton.Visible = True
 TextHint = 'Edit or pick'
 OnExit = edHistoryExit
end

The component works by adding each new text to the popup menu as the
user leaves the edit box, provided this text is not already in the menu:
procedure TFormButtonEdits.edHistoryExit(
 Sender: TObject);
begin
 if (edHistory.Text <> '') and
 (PopupMenu1.Items.Find (edHistory.Text) = nil) then
 begin
 PopupMenu1.Items.Add (NewItem (edHistory.Text, 0,
 False, True, RestoreText, 0, ''));
 end;

Marco Cantù, Delphi 2009 Handbook

262 - Chapter 8: VCL Improvements

end;

The predefined menu items and each new menu item added dynamically are
connected with the RestoreText event handler which takes the caption of
the selected menu items, strips any hot key, and copies it to the edit box:
procedure TFormButtonEdits.RestoreText(Sender: TObject);
begin
 edHistory.Text := StripHotkey (
 (Sender as TMenuItem).Caption);
end;

Updates to Common Controls
The improvements to standard controls in the VCL of Delphi 2009 are
extremely important because they are also related with commonly used con-
trols like edits and buttons. The new version of the VCL also includes many
enhancements to other controls provided by the Windows API since the
move to the 32-bit version of the operating system. Here are some controls
that have new features:

● ImageList: Although not every single developer will benefit from
this, the ImageList component now supports alpha-blended images
and lets you set a custom color depth, using a new property with the
corresponding name (ColorDepth).

● TreeView: Another component with limited updates in the past is
the TreeView, which now lets you define an image index for expan-
ded nodes and (on Windows XP or later) support disabled tree
nodes.

Grouping in a ListView
One common control worth exploring in some more detail is the ListView,
that in Delphi 2009 receives direct support for grouping. This feature
requires Windows XP or Vista, with the latter providing extended features.

There are three new properties in the ListView control. The Boolean
GroupView enables this new kind of display, the GroupHeaderImages
refers to an ImageList containing the images for the group headers, and the

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 263

Groups property is a collection of group definitions. Each group can have a
main title (Header), a related icon (TitleImage), a longer description
(Subtitle), a footer line (Footer), plus some more text elements and
alignment properties for headers and footer. A set of options let's you set the
group as collapsible, remove the header, hide the group, and so on119.

You can see an example of grouping in a ListView in the main form of the
GroupingList application, displayed below at design time:

This is the definition of the groups inside the ListView control (in DFM
format), in which I've set a couple of extra descriptions that will show up
only if you center the group headers:
object ListView1: TListView
 Groups = <
 item
 Header = 'Arrows'
 Footer = 'Footer: You can pick any of the arrows ' +
 'for the caption'

119 Some of the extra text elements of the groups are displayed only in specific cases,
such as when the group header is centered (in which case several items might end up
overlapping). Other features of the ListView, like the subset mode, are far from obvi-
ous to activate. I'm not sure how much of this is due to the VCL and how much to the
Windows API, but looking at the SDK there is almost no documentation about some
of these extended features... which probably makes wrapping them in a component
some sort of guess work.

Marco Cantù, Delphi 2009 Handbook

264 - Chapter 8: VCL Improvements

 GroupID = 0
 State = [lgsNormal, lgsCollapsible]
 HeaderAlign = taLeftJustify
 FooterAlign = taLeftJustify
 Subtitle = 'Subtitle: Arrow group subtitle'
 TopDescription = 'Top Descr: A group of arrows'
 TitleImage = 0
 SubsetTitle = 'Subset title...'
 end
 item
 Header = 'Houses'
 Footer = 'Which house would you prefer?'
 GroupID = 1
 State = [lgsNormal, lgsCollapsible]
 HeaderAlign = taLeftJustify
 FooterAlign = taLeftJustify
 Subtitle = 'Houses with different colors for ' +
 'the roof...'
 TitleImage = 1
 ExtendedImage = -1
 end>
 GroupHeaderImages = ImgGroups
 GroupView = True
end

The only code of the example is used to change the alignment of the header
and footer of each group. This is the event handler of one of the three tool-
bar buttons:
procedure TFormGroupingList.tbRightClick(
 Sender: TObject);
var
 aGroup: TCollectionItem;
begin
 for aGroup in ListView1.Groups do
 begin
 (aGroup as TListGroup).HeaderAlign := taRightJustify;
 (aGroup as TListGroup).FooterAlign := taRightJustify;
 end;
end;

Beside grouping support, the ListView control has another unrelated new
event, OnItemChecked, triggered when a user selects an item of the
ListView.

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 265

Marquee and More for ProgressBar
Controls

The ProgressBar component is another common control that got extended
features over the last few years that were not directly supported by the VCL.
If you are not using runtime themes you can set a custom color for the bar
and its background, using the BarColor and BackgroundColor properties.

A nice feature, available on Windows XP and Vista, is the marquee style of
the progress bar, in which the bar keeps moving to show the program is
working without indicating a specific position. This is a good option in situ-
ations in which you don't know how much time the operation will take, but
still indicate to the user to wait as the requested operation is taking place. To
enable this, set the Style property to pbstMarquee and optionally change
the default value for the MarqueeInterval property, to make the graphic
element move slower or faster. As an example, these are the settings of the
first ProgressBar of the SuperProgress demo:
object ProgressBar1: TProgressBar
 Style = pbstMarquee
 MarqueeInterval = 20
end

On Windows Vista, the ProgressBar control has an extended feature, called
smooth reverse. If you are setting a progress position and you are advancing
it by a large amount the control will generally move smoothly (with a sort of
animation) to the new position. By activating smooth reverse the same hap-
pens if you have to (unexpectedly) move the progress Position backwards:
rather than jumping back, it will gradually get there.

This effect cannot be captured by a static image, so you should try the
SuperProgress demo for yourself. The second and third controls of the demo
differ only by the value of the SmoothReverse property. There are three
buttons below the progress bar that let you loop or move them back and
forth, to experiment with the visual effect. The code is fairly trivial, so I've
omitted it from the text of the book.

Three radio buttons on the side of the main form of the example let you
change the State property of the second ProgressBar. This is another new
property of the control in Delphi 2009. You can change the default state to a
paused or error state, and the green progress bar will change to yellow or
red respectively:

Marco Cantù, Delphi 2009 Handbook

266 - Chapter 8: VCL Improvements

procedure TFormSuperProgress.RadioGroup1Click(
 Sender: TObject);
begin
 case RadioGroup1.ItemIndex of
 0: ProgressBar2.State := pbsNormal;
 1: ProgressBar2.State := pbsError;
 2: ProgressBar2.State := pbsPaused;
 end;
end;

Check Boxes in a Header
Another common control, albeit not very frequently used, is the HeaderCon-
trol component. In the VCL of Delphi 2009, this control now supports fixed
width header sections (using the NoSizing Property), extra non-visible
headers if they don't fit (using the Overflow property) and, more interest-
ingly, check boxes within the header sections.

To enable this feature you have to turn it on for the control as a whole and
then for each individual section, as indicated by the properties of the control
(and its Sections collection) in the CheckBoxHeader example:
object HeaderControl1: THeaderControl
 Sections = <
 item
 AutoSize = True
 CheckBox = True
 Text = 'one'
 end
 item
 AutoSize = True
 CheckBox = True
 Checked = True
 Text = 'two'
 end
 item
 AutoSize = True
 CheckBox = True
 Text = 'three'
 end
 item
 AutoSize = True
 CheckBox = True
 Text = 'four'
 end>
 OnSectionCheck = HeaderControl1SectionCheck

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 267

 CheckBoxes = True
end

With these properties for the control, the form of the example (at design
time) looks as follows:

The problem with this new feature, though, is that the new
OnSectionCheck event doesn't fire. The internal CNNotify message hand-
ler method intercepts the specific message and properly updates the status
of the Checked property of the header section, but this property setter fails
to trigger the corresponding event120.

RichEdit 2.0
The RichEdit component in Delphi used to encapsulate the original version
of the corresponding common control. To support a newer version of the
control, the VCL in Delphi 2009 now uses the version 2 specific DLL hosting
this common control:
 RichEditModuleName = 'RICHED32.DLL'; // Delphi 2007
 RichEditModuleName = 'RICHED20.DLL'; // Delphi 2009

In practice this means a newer and more robust version, but not a lot of new
features. In fact quite the opposite, as the VCL component is basically
unchanged. This means most of your existing Delphi code based on this
common control will keep working, and the VCL will take care of some
internal differences between versions. The only exception is due to differ-
ence in the line separator format121.

120 This is apparently a bug that was reported to CodeGear, even if quite late in the re-
lease cycle.

121 A possible (negative) side effect of adopting version 2 of the Rich Edit Windows com-
mon control is caused by a change in the way line endings are managed. In the past,
new lines where represented by the CR LF sequence (#13#10), while in the newer
version they are represented as CR (#13). If you have existing code that processes the
text of the control or its current selection, it might not work properly any more be-
cause of this change.

Marco Cantù, Delphi 2009 Handbook

268 - Chapter 8: VCL Improvements

An interesting element is how the RichEdit handles Unicode text and saving
and loading to and from Unicode files. The code added to the control in
Delphi 2009 makes it work more or less like any other TStringList. You
can specify an encoding when saving, and if you don't set one when loading
the component will use the BOM to determine the correct format. The
default for saving, though, remains the default code page used by the oper-
ating system.

In the UniRichEdit example all I wanted to show was saving the current file
as UTF-16, so I've added two buttons to the form with the following code:
procedure TFormUniRichEdit.Button1Click(Sender: TObject);
begin
 RichEdit1.Lines.SaveToFile('local.rtf',
 TEncoding.Unicode);
end;

procedure TFormUniRichEdit.Button2Click(Sender: TObject);
begin
 RichEdit1.Lines.LoadFromFile('local.rtf');
end;

The program uses an ActionList component populated with some of the
standard editing actions, that have remained unchanged (as proof that you
can easily upgrade existing applications). The various actions are exposed in
a toolbar. If you run the program and load the default file I've added to its
folder, you should see output like the following:

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 269

Native VCL Components
After looking at standard controls and common controls provided by the
Windows API, wrapped by corresponding VCL controls, it is now time to
focus on new features of native VCL controls and one brand new control, the
CategoryPanels component.

In particular I'll start by looking at a few extensions to the Action Manager
architecture, devote some time to panels, cover some global VCL compon-
ents, and have a look at the extended support for graphics, now including
PNG images, for both the Image and ImageList components.

The Action Manager Components
One set of native components that have seen some minor improvements are
those of the Action Manager architecture122. The ActionManager component
has three new properties for large images, disabled images, and both large
and disabled ones.

The PopupActionBar has support for action bar styles, using the new Style
property. The entire set of action menus and toolbars has support for
themed displays on Windows XP or later. If you set the platform default-
style for the ActionManager, the associated visual component will pick the
look and feel of the current version of the operating system at runtime.

About Panels
Until a few years back, the Panel component was a commonly used compon-
ent with limited features, even if it did support docking. In Delphi 2006 it
got a significant redesign, with the advent of panels that don't use absolute
positioning for the controls they contain, but a specific positioning rule.
These special panels are the FlowPanel control and the GridPanel control123.
All controls gain a small new feature, as you can now disable the (almost

122 The role of the Action Manager architecture and of the related components is going
to increase significantly starting with Delphi 2009 thanks to the connection with the
Ribbon components, covered in Chapter 9.

Marco Cantù, Delphi 2009 Handbook

270 - Chapter 8: VCL Improvements

generally useless) panel caption, by triggering the new ShowCaption prop-
erty to False rather than setting the Caption property to an empty string.

You might wonder if this was really needed, as we managed to live without
this feature for so many years, but the fact is that panels can now be hosted
by a new custom VCL control, called CaterogyPanelGroup. This panel con-
tainer uses the hosted panel caption as a title, so the Caption is needed to
identify the panels even when you don't want it to be visible.

The New CategoryPanelGroup Control
A family of components for which we have probably seen the largest number
of VCL controls available over the years has been the so-called Outlook Side-
bar family, mimicking the well established interface that was originally
introduced by the Microsoft email program.

In modern applications, styles have changed a lot from the original collec-
tion of large icons used for the various sections of the program, but the
usage of a sidebar with options and commands continues. For the first time,
Delphi 2009 offers a similar component out of the box.

The CategoryPanelGroup control is a visual container of CategoryPanel con-
trols. You create these category panels using the shortcut menu of the
CategoryPanelGroup at design time or calling its CreatePanel method at
runtime. The individual CategoryPanels refer to the container using the
PanelGroup property, while the grouping controls has a Panel property (a
bare-bones TList of pointers) or a list of child controls, in the standard
Controls property.

If you try adding any other control directly to the CategoryPanelGroup the
IDE will show the error “Only CategoryPanels can be inserted into a Cat-
egoryPanelGroup.” Of course, once you've defined a few CategoryPanels
you can add virtually any control you like to them. Here is the user interface
of this control, taken from the CategoryPanels demo:

123 Once more, you can refer to my Delphi 2007 Handbook for more information about
these controls. Sorry to keep referring to my previous book, but there is little public
information covering these controls... and my previous book really complements this
one.

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 271

The grouping control and the individual panels have a plethora of properties
which you can use to customize the user interface, managing headers with
multiple images depending on their collapsed or expanded status, activate
gradient backgrounds for the headers, change the font and the Chevron col-
ors, and much more.

These are the settings of the panels above (from which I've removed details
of the hosted controls):
object CategoryPanelGroup1: TCategoryPanelGroup
 VertScrollBar.Tracking = True
 HeaderFont.Color = clWindowText
 HeaderFont.Name = 'Tahoma'
 Images = ImageList1
 object CategoryPanel1: TCategoryPanel
 Caption = 'CategoryPanel1'
 CollapsedImageIndex = 0
 ExpandedImageIndex = 0
 object Button1: TButton...
 object Button2: TButton...
 end
 object CategoryPanel2: TCategoryPanel
 Caption = 'CategoryPanel2'
 Collapsed = True
 CollapsedImageIndex = 2
 ExpandedImageIndex = 1
 object CheckBox1: TCheckBox...
 object CheckBox2: TCheckBox...
 object CheckBox3: TCheckBox...
 end

Marco Cantù, Delphi 2009 Handbook

272 - Chapter 8: VCL Improvements

 object CategoryPanel3: TCategoryPanel
 Caption = 'CategoryPanel3'
 object GridPanel1: TGridPanel
 Align = alClient
 Caption = 'GridPanel1'
 ControlCollection = <...>
 ShowCaption = False
 object Button3: TButton...
 object Button4: TButton...
 object Button5: TButton...
 object Button6: TButton...
 end
 end
end

If we look at the header images, the first panel uses the same one for both
states, the second uses two different images for the expanded and collapsed
states, while the third has no custom images and uses the default Chevron
symbol. The third CategoryPanel doesn't host its controls directly, but has a
GridPanel (with 4 buttons) aligned to its entire surface. This is an example
of how you can combine a CategoryPanel with panels providing custom pos-
itioning. The program has a little code as well. A first button is used to add a
new dynamic CategoryPanel to the group and place a button over it:
procedure TFormCategoryPanels.btnAddCategoryClick(
 Sender: TObject);
var
 newPanel: TCategoryPanel;
begin
 newPanel := CategoryPanelGroup1.CreatePanel(self)
 as TCategoryPanel;
 NewPanel.Caption := 'Dynamic Panel';
 with TButton.Create(self) do
 begin
 Caption := 'New button';
 Parent := NewPanel;
 SetBounds (10, 10, Width, Height);
 end;
end;

Notice that the CreatePanel method of the category panel group control
returns a generic TCustomCategoryPanel, so I had to cast the type to the
specific TCategoryPanel type to refer to the Caption property. The reason
for this apparently strange behavior is that the category panel group control
creates an object of a class which you can configure in an inherited class by
overriding the GetCategoryPanelClass virtual function. Still, this is a
little unusual, as most other VCL controls that let you customize the class of

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 273

an internal object refer to a specific class and not a partially defined base
class as in this case. This approach apparently makes the control more cus-
tomizable, as you can have a different implementation class not exposing
some of the base class properties, but it also makes code that assumes the
given type (and you have to assume a type to be able to use the individual
panels, as in the code above) quite error prone. The code above will fail in
case of a different category panel class.

A second button shows the two different ways to list the existing category
panels of a group that I mentioned earlier, the generic Controls array or
the specific (but less type safe) Panels property. The former, in fact, is an
array of controls, while the latter is a list of pointers124:
procedure TFormCategoryPanels.btnListPanelsClick(
 Sender: TObject);
var
 I: Integer;
begin
 ListBox1.Clear;
 for I := 0 to CategoryPanelGroup1.ControlCount - 1 do
 ListBox1.Items.Add (
 (CategoryPanelGroup1.Controls[I] as TCategoryPanel).
 Caption);
 for I := 0 to CategoryPanelGroup1.Panels.Count - 1 do
 ListBox1.Items.Add (
 TCategoryPanel(CategoryPanelGroup1.Panels[I]).
 Caption);
end;

TrayIcon Update
The TrayIcon component, first introduced in Delphi 2007, has a new
OnBalloonClick event, used for handling a click on the area of the balloon
help when this is visible. To show this in practice I've extended the
MyTrayIcon example of Delphi 2007 Handbook into the new MyTrayIcon-
Click example, that has the following DFM definition for its main form:
object FormMyTrayIconClick: TFormMyTrayIconClick
 object TrayIcon1: TTrayIcon
 BalloonHint = 'sample balloon hint'

124 This would have been a nice case for using a generic list or objects list, rather than a
plain TList, but as this was added in parallel to the new compiler features it is not
surprising it doesn't rely on them.

Marco Cantù, Delphi 2009 Handbook

274 - Chapter 8: VCL Improvements

 BalloonTitle = 'hi'
 BalloonTimeout = 1000
 BalloonFlags = bfInfo
 Icon.Data = {...}
 PopupMenu = PopupMenu1
 Visible = True
 OnBalloonClick = TrayIcon1BalloonClick
 OnMouseDown = TrayIcon1MouseDown
 end
 object PopupMenu1: TPopupMenu...
end

While the TrayIcon1MouseDown event handler shows the Balloon hint, the
TrayIcon1BalloonClick method displays a simple message box, just to
prove the event handler works.

Default Fonts for Application and Screen
Global Objects

Delphi applications start with a predefined default font, determined at
design time. This is problematic when you might want the same executable
to run smoothly on different versions of Windows, like XP and Vista, that
use different default fonts.

The Application global object in Delphi 2009 can provide a standard font
to all forms that have ParentFont set to True. To accomplish this you can
set the DefaultFont property of the Application. This can be used, for
example, to migrate the look and feel of an application to Vista, by setting
the font of each form to Segoe UI more easily than in the past. Notice that
this property as well as the status of the ParentFont setting is checked
when the form is created, and produces no effect if you change it at runtime.

That's why in the AppFont example I've added the font definition code in
the project source code file (the CheckWin32Version function is covered
later in the section “Extended Vista Support”):
begin
 Application.Initialize;
 if CheckWin32Version(6) then // at least Vista
 begin
 Application.DefaultFont.Name := 'Segoe UI';
 Application.DefaultFont.Size := 9;
 end;
 Application.MainFormOnTaskbar := True;

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 275

At this point all I had to do was to turn on the ParentFont property for
each of the two forms at design time. Two buttons, one in each form, display
their font name, as a proof that the technique works (although you can prob-
ably see the different fonts in those forms). These are the properties of the
secondary form:
object FormSecondary: TFormSecondary
 Caption = 'Secondary'
 ParentFont = True
 Visible = True

Now that the forms have the ParentFont property set to True, we can go
ahead and dynamically change the font in all forms by writing code like:
procedure TFormAppFont.btnChangeFontClick(
 Sender: TObject);
begin
 Application.DefaultFont.Name := 'Times New Roman';
 Application.DefaultFont.Size := 10;
end;

Similarly, the Screen global object can now be used to customize the font
used by default in Delphi native message boxes, thanks to the new
MessageFont property. After setting this value, you can call routines like
ShowMessage and MessageDlg and get a form that uses the given font. This
is the case, however, only if the calls are not redirected to use the new task
dialogs provided by Vista. In other words, this MessageFont property only
has effect if you are not running on Vista or if you are running on Vista and
disable the global variable UseLatestCommonDialogs.

Both cases are demonstrated by the event handler of the following button,
part of the AppFont application:
procedure TFormAppFont.btnScreenFontClick(
 Sender: TObject);
begin
 Screen.MessageFont.Name := 'Segoe UI';
 Screen.MessageFont.Size := Screen.MessageFont.Size + 2;
 UseLatestCommonDialogs :=
 cbUseLatestCommonDialogs.Checked;
 ShowMessage ('Hello');
 MessageDlg ('Hello', mtINformation, [mbOK], 0);
end;

If you are running this program on Vista, by changing the status of the check
box, you can see a custom message box with an increasingly larger font or a
standard task dialog, with the default system font. Here is an example of this
large font in a dialog:

Marco Cantù, Delphi 2009 Handbook

276 - Chapter 8: VCL Improvements

Improved Graphics Support
In the early days, Delphi graphic support was mostly limited to bitmaps.
Over the years, there have been extensions to the image formats you could
use in the Image component, including JPEG format support125. In Delphi
2009 the support for multiple images has been extended to PNG and all
formats can now be used with the Image control as well with the ImageList
control.

Moreover, the ImageList control supports setting a specific color depth,
although increasing its value will clear all images from the current image
list. There have also been enhancements in the ImageList editor and alpha
channel support.

The TBitmap class now supports the alpha channel, using the new
AlphaFormat property, while TGraphic class has support for transparent
images using the SupportsPartialTransparency property.

As there are many changes, I've picked a few worth underlining in the
GraphicTest program, starting with the most significant change, that is the
native support for multiple formats including PNG (which is new). The sup-
port for the formats comes from a set of units that define inherited

125 Technically notice that all JPEG-related support (specifically that of the Jpeg.pas
unit) has been moved to a new package, called vclimg.bpl. If you had references from
other packages you might have to update them manually.

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 277

TGraphic classes that you can selectively include in your application. Here
are the units and the graphics classes they make available:

Format Unit Class

JPEG jpeg.pas TJPEGImage

GIF GIFImg.pas TGIFImage

PNG126 pngimage.pas TPngImage

Simply by including the corresponding unit you can directly load a file of
those formats (plus the standard Bitmap, Icon, and Metafile formats) into
an Image component. As the format is determined by the file extension, you
can easily load graphic files127 with different formats with simple code (part
of the GraphicsTest example) like:
procedure TFormGraphicsTest.btnLoadImageClick(
 Sender: TObject);
var
 strFilename: string;
begin
 case fImgNo of
 0: strFilename := 'adog.jpg';
 1: strFilename := 'Athene.png';
 2: strFilename := 'CodeGear.gif';
 end;
 Image1.Picture.LoadFromFile(strFileName);
 fImgNo := (fImgNo + 1) mod 3
end;

The program also has some code to create an empty bitmap in memory. A
user can draw on this bitmap by moving the mouse over the image control.
The bitmap can then be saved in the three different formats. For example,
the code for saving the file in JPEG format looks like this:
var
 jpgImg: TJPEGImage;
begin
 jpgImg := TJPEGImage.Create;
 try

126 The support for PNG images in Delphi 2009 comes from the pngdelphi project by
Gustavo Daud, originally available on Source Forge. The GIF support, which has been
available for some time, was based on the version by Anders Melander. This goes
some way to explaining the inconsistent unit names.

127 The file format is determined by looking at the file extension, according to a set of in-
ternal registrations. There is no check of the actual image data to determine its
format.

Marco Cantù, Delphi 2009 Handbook

278 - Chapter 8: VCL Improvements

 jpgImg.Assign(Image1.Picture.Graphic);
 jpgImg.SaveToFile('test.jpg');
 finally
 jpgImg.Free;
 end;

To avoid repeating this code for the PNG and GIF formats, I've written a
simple routine to take care of the various differences:
procedure SaveWithClass (graph: TGraphic;
 graphClass: TGraphicClass; const strFilename: string);
var
 grapImg: TGraphic;
begin
 grapImg := graphClass.Create;
 try
 grapImg.Assign(graph);
 grapImg.SaveToFile(strFilename);
 finally
 grapImg.Free;
 end;
end;

This works only with the default settings, though, as you'll need to work on
the specific TGraphic descendant class to to trigger its compression level
and other specific options for the given format. In the demo program the
routine is called like this:
SaveWithClass (Image1.Picture.Graphic,
 TPngImage, 'test.png');
SaveWithClass (Image1.Picture.Graphic,
 TGIFImage, 'test.gif');

The support for multiple image formats doesn't relate exclusively to the
Image component, but has also been extended to the ImageList component.
This means you have now have PNG-based image lists, for example. I've
already used an ImageList in other demos of this chapter into which I've
loaded PNG images from the GlyFX library licensed by CodeGear and
included in Delphi (and installed, by default, in the \Program Files\Com-
mon Files\CodeGear Shared\Images\GlyFX folder).

If you are interested in doing so and need to handle the transparent color
(something the GlyFX library images require if you want to use them for
buttons, List Views, Tree Views and most other visual controls) you have to
set the ColorDepth property to cd32Bit before loading the images. Be wary
as setting this property clears the ImageList. As an example in the Graphic-
sTest program there is an ImageList component with the following settings:

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 279

object ImageList1: TImageList
 ColorDepth = cd32Bit
 Bitmap = {}
end

If you fail to do this step before loading the images, they'll have a black back-
ground which is very hard to remove with code (and impossible to remove
when hooking the images of the ImageList to other visual components). If
you try to do it from program code after loading the images, you will simply
clear the image list.

If you want to access the individual elements of the ImageList you can do so
by calling, among others, the Draw method, as in:
 ImageList1.Draw(Image2.Canvas, 10, 10, 0);
 ImageList1.Draw(Image2.Canvas, 10, 30, 1);

You can pass further parameters to the Draw method, indicating a drawing
style (to generate selected and focused images from the standard ones) and
choose to draw a mask or an actual image:
 ImageList1.Draw(Image2.Canvas, 30, 10, 4,
 dsSelected, itImage);
 ImageList1.Draw(Image2.Canvas, 30, 30, 4,
 dsTransparent, itImage);
 ImageList1.Draw(Image2.Canvas, 30, 50, 4,
 dsFocus, itImage);
 ImageList1.Draw(Image2.Canvas, 30, 70, 4,
 TDrawingStyle.dsNormal, itImage);

Notice the last call that explicitly refers to the TDrawingStyle enumerated
type, as there is a dsNormal value part of the TBandDrawingStyle enu-
meration of the ExtCtrls unit, included in the project because it defines the
Image component.

The previous two code snippets are part of a routine used to paint elements
of an ImageList over a Image component, producing the following output:

Marco Cantù, Delphi 2009 Handbook

280 - Chapter 8: VCL Improvements

As an aside while speaking of the Image component, the companion data-
aware TDBImage component, used for displaying images extracted from
database BLOB fields, now supports a “best fit” display of the image when
setting its Proportional property.

The Clipboard and Unicode
The Clipboard global object is a rather simple wrapper of the correspond-
ing API, defined in the ClipBrd unit. A notable extension to this component
is the way it handles Unicode strings. As you paste text into the clipboard, in
fact, the Delphi wrapper will now associate the CF_UNICODETEXT clipboard
format to the data, rather than the classic CF_TEXT format.

This is demonstrated by the simple UniClipboard program, which can add
the contents of an edit box to the Clipboard (containing a plain text or two
Japanese characters) and paste it after checking which clipboard formats
are currently associated with the available Clipboard data (as there can be
more than one). Here is the relevant code:
procedure TFormUniClipboard.btnCopyClick(
 Sender: TObject);
begin
 Clipboard.Open;
 Clipboard.AsText := Edit1.Text;
 Clipboard.Close;
end;

procedure TFormUniClipboard.btnPasteClick(
 Sender: TObject);
begin
 Clipboard.Open;
 if Clipboard.HasFormat(CF_TEXT) then
 Memo1.Lines.Add('CF_TEXT');
 if Clipboard.HasFormat(CF_UNICODETEXT) then
 Memo1.Lines.Add('CF_UNICODETEXT');
 Memo1.Lines.Add(Clipboard.AsText);
 Clipboard.Close;
end;

Marco Cantù, Delphi 2009 Handbook

Chapter 8: VCL Improvements - 281

Extended Vista Support
In this chapter we have seen that quite a number of new properties and fea-
tures can only be used on the Vista version (or newer) of the Windows
operating system. I think it is worth providing a short summary in this final
section.

Before I get to that, though, notice that the VCL uses a new special support
function, CheckWin32Version, that returns True if the version of the oper-
ating system is equal to or greater than the version passed as parameter
(using one or two Integers for the major version, and optionally the minor
one). This function was already in Delphi 2007, but I had missed it in my
book (and didn't see it used too often in the VCL source code).

As an example, look at the following snippet, which I added to the UniClip-
board program (even if it is totally unrelated):
 if CheckWin32Version(6) then
 ShowMessage ('Running on Windows Vista or later');
 if CheckWin32Version(5) then
 ShowMessage ('Running on Windows 2000 or later');

In Delphi 2007 the VCL introduced Vista support, provided task dialogs
(with redirection of standard messages and the TaskDialog component), the
GlassFrame property, enhanced common dialogs (again with new compon-
ents and a partial redirection of the existing ones), improvements in themes
support in the management of the minimized main form, with the
MainFormOnTaskbar property of the Application global object.

On top of these features, that already make programs integrate smoothly
with the latest version of the Windows operating system, Delphi 2009
includes the following Vista-specific features:

● The GlowSize property of the Label component.

● The elevation, command link, and drop down menu support for the
Button control.

● Smooth reverse support for the ProgressBar control.

● Text hints for the ComboBox component.

● Some extended grouping features of the ListView control.

● Themed hint windows.

Marco Cantù, Delphi 2009 Handbook

282 - Chapter 8: VCL Improvements

Finally a helpful feature for Vista support is the new Application global
object setting for the default font to be used by each form of an application.
This is significant as Vista has a new default font (Segoe UI), compared to
Windows XP (and earlier versions).

What's Next
In this section I've explored countless improvements to classic VCL controls
in Delphi 2009, partially related with new features provided by the operat-
ing system. I also shown an example of one brand new component, the
CategoryPanelGroup.

This is not the only new visual component of the VCL, quite the contrary. A
notable extension to the native set of VCL controls in Delphi 2009 is the
support for the Ribbon user interface. This topic is so significant that I've
decided to devote a specific chapter to it, rather than covering it in this all-
encompassing VCL updates chapter.

Before we get to the Ribbon control, though, there is another area of the
VCL that was significantly modified in Delphi 2009: COM support. As we'll
see in the next chapter, there is the introduction of an interface definition
language (RIDL), a different role for type library files, a new IDE pane, and
updated Wizards. For those who use COM in their architecture, this is posit-
ive news.

Marco Cantù, Delphi 2009 Handbook

Chapter 9: COM Support in Delphi 2009 - 283

Chapter 9: COM
Support In

Delphi 2009

For many years the Component Object Model (COM) technology has been at
the foundation of the Windows operating system, both as a way to let applic-
ations talk with the OS and to let programs talk to each other. COM is the
only object model for Windows that works across languages in a native way.
The fact that COM programming was far from easy and that it provided a
not-so-robust foundation, was one of the reasons Microsoft mentioned for
abandoning it and moving to a managed object model like the one in the
Microsoft .NET Framework.

Despite Microsoft calling COM obsolete when .NET was announced, the
COM technology is still heavily in use in many Windows applications and is
far from dead. COM also provides an easy way to let Win32 applications

Marco Cantù, Delphi 2009 Handbook

284 - Chapter 9: COM Support in Delphi 2009

work alongside .NET ones. In any case, I don't want to delve into a history of
COM here or a comparison with .NET. I just want to focus on the fact that
even if not growing and not used any more for communication among dif-
ferent computers, COM is still at the heart of many Windows programs.
Moreover, Delphi traditionally made it very easy to write COM servers and
use existing ones, so many Delphi developers rely on this technology.

Given this introduction, it is relevant to notice that there are significant
changes in the COM support provided by Delphi 2009. In particular, the
role of type libraries has been significantly downplayed and there is a new
type of source code files, Restricted IDL files, that assume a central role for
COM development in this version of Delphi.

IDL, Type Libraries, and RIDL
Originally the definition of COM objects was based on an Interface Defini-
tion Language (IDL) specified by Microsoft (and not too different from the
one in use for CORBA at the time). With the advent of Visual Basic, though,
Microsoft need a simpler, higher level, visually-oriented format, so they
started using type libraries, a binary resource format compiled into servers
you could query to ask for the classes exposed by the server and their meth-
ods. Type libraries became a de-facto standard, even if their format was
never specified in detail. Delphi started relying on type libraries from the
early days, both for importing the specification of a server that has a type
library and for creating a server. In a server, type libraries are used at
runtime to initialize internal registries by the VCL architecture128.

In Delphi 2009 type libraries have been downplayed, although they are still
part of the architecture. When creating a new COM server, you use the type
library editor but end up creating a Restricted IDL (RIDL) source code file.
The RIDL file is used both for generating the type library (something you
can do manually by invoking the new GenTLB.exe utility; available in the
Delphi bin folder) and for generating the corresponding Delphi language
interfaces (still stored in a <projectname>_TLB.pas file). When opening

128 The part of the VCL that focuses on COM development was originally called the DAX
framework, for Direct ActiveX framework. Now this term is seldom used, although
internal references to it remain.

Marco Cantù, Delphi 2009 Handbook

Chapter 9: COM Support in Delphi 2009 - 285

an existing project or creating a client that refers to an existing type library,
the RIDL is created from the type library (which could be achieved manually
using the new -I flag of the tlibimp.exe utility).

A Textual RIDL
Again, the RIDL is the base format used as a starting point for Delphi code
generation of COM interfaces (both on the client and on the server side).

One of the big advantages of this format, beside avoiding a bug that would
occasionally trash the binary TLB file irrevocably, is that using a text file
makes it much easier to use a RIDL file with version control, compare differ-
ent versions, and (a possible extension) support large multi-user projects
with multiple partial RIDL files.

The RIDL, like the full blown IDL, uses a syntax vaguely resembling the C++
language syntax and many decorators. For example, an interface with a
single method could be described as129:
 interface INumberProp: IUnknown
 {
 HRESULT _stdcall Increase(void);
 };

In C++ the colon after a class introduces a list of base classes, meaning that
INumberProp inherits from IUnknown. The content of the class is within
braces (or curly brackets). Each method has the return value, followed by
optional modifiers (including the calling convention), the name, and the
parameters, if any (void means no parameter).

As mentioned, each symbol is generally prefixed by some attributes, includ-
ing the interface ID (IID), a version number, a description, and other flags:
 [
 uuid(4D24B32A-DE61-4EBE-AE53-6DF2D3DC80DA),
 version(1.0),
 helpstring("Interface for NumberProp Object"),
]
 interface INumberProp: IUnknown
 {
 ...
 }

129 The complete source code from which I took these code snippets is in the next sec-
tion, “The RIDL Format”.

Marco Cantù, Delphi 2009 Handbook

286 - Chapter 9: COM Support in Delphi 2009

For a more detailed description of the COM IDL you can refer to Microsoft's
own documentation. You can find the syntax specification of RIDL files
(well hidden) in the Delphi help at:
ms-help://embarcadero.rs2009/devwin32/
 wtlusingobjectpascaloridlsyntax_xml.html

(Notice that the help page title refers to the previous version of Delphi, as
now the Type Library editor uses the RIDL syntax exclusively.)

The RIDL Format (COM Servers)
To see what this new RIDL format is all about, let's convert an existing COM
project by opening it in Delphi 2009. As an example, I've taken the
SimpleServer COM example of Mastering Delphi 2005 and converted it to
Delphi 2009. Beside the standard project file format conversion, Delphi
warned me of the type library migration:
Converting '...\08\SimpleServer\SimpleServer.tlb'
 to .ridl format
 Reading 'SimpleServer.tlb'
 Writing 'SimpleServer.ridl'
 Adding 'SimpleServer.ridl'
 Removing 'SimpleServer.tlb'

If we look at the project files in the Project Manager, we can see the new
RIDL file:

Marco Cantù, Delphi 2009 Handbook

Chapter 9: COM Support in Delphi 2009 - 287

If we look to the project file source code, instead, we can still see the classic
reference to the TLB resource file. The type library, in fact, is still included
in the executable, after it is compiled from the RIDL file.

How the TLB gets converted and how the RIDL file is generated mostly
depends on some Tools Options for the type library. These options are quite
different than in the past. In particular, as this is an in-process server, to
keep the code compatible (and easier from the Delphi perspective) we need
to enable safecall130 mapping for any COM interface, using the Environ-
ment Options settings below:

As the default is to have safecall mappings only for dual interfaces, you'll
generally have to change these settings, and need to do so before opening
the project (or reopen the project after changing the settings, as the Delphi

130 Using the safecall convention all COM calls are mapped, so the error checking
done in terms of HRESULT in the system are remapped to exceptions on the Delphi
side. Basically each function or procedure becomes a function with an HRESULT re-
turn value, as requested by COM dual interfaces, and an extra out parameter is pos-
sibly added for the actual return value. On the server side Delphi wraps the code in a
try except block which will eventually trap an exception and return an error code. On
the client side, an error code in a call will force Delphi to raise the corresponding ex-
ception.

Marco Cantù, Delphi 2009 Handbook

288 - Chapter 9: COM Support in Delphi 2009

IDE will suggest to you, but beware you might have to open the type library
editor a couple of times before the code is generated the way you asked).

If you can reopen the type library in the IDE, you'll see a type library editor
very similar to the past:

Refresh the type library editor implementation (using the Refresh button of
the toolbar of this pane) to generate or update the RIDL file.

For the SimpleServer example, which I've upgraded from an older version of
Delphi, I got the following RIDL code, which imports a standard Delphi type
library, defines the INumberProp interface, with a property and a method,
and defines the NumberProp coclass (construction class) for the server
object implementing the interface:
library SimpleServer
{
 importlib("stdole2.tlb");
 [
 uuid(4D24B32A-DE61-4EBE-AE53-6DF2D3DC80DA),
 version(1.0),
 helpstring("Interface for NumberProp Object"),
 oleautomation
]
 interface INumberProp: IUnknown
 {
 [propget, id(0x00000065)]
 HRESULT _stdcall Value([out, retval] long* New);
 [propput, id(0x00000065)]
 HRESULT _stdcall Value([in] long New);
 [id(0x00000066)]
 HRESULT _stdcall Increase(void);
 };

Marco Cantù, Delphi 2009 Handbook

Chapter 9: COM Support in Delphi 2009 - 289

 [
 uuid(BDC9A273-A973-4DB4-ADE7-8F0A49004D29),
 version(1.0),
 helpstring("NumberProp")
]
 coclass NumberProp
 {
 [default] interface INumberProp;
 };
};

This interface is independent from the safecall mapping decisions, which
are reflected only in the corresponding Delphi code. You can see a first
interface, based on IUnknown, with a Value property defined by a getter
and a setter and an Increase method. In terms of the corresponding
Delphi interface, the code is generated as follows (and remains very similar
to the past) and placed in a SimpleServer_TLB.pas unit:
type
 INumberProp = interface(IUnknown)
 ['{4D24B32A-DE61-4EBE-AE53-6DF2D3DC80DA}']
 function Get_Value: Integer; safecall;
 procedure Set_Value(New: Integer); safecall;
 procedure Increase; safecall;
 property Value: Integer
 read Get_Value write Set_Value;
 end;

 CoNumberProp = class
 class function Create: INumberProp;
 class function CreateRemote(
 const MachineName: string): INumberProp;
 end;

Having forced the generation of safecall mappings, I didn't have to touch
the original source code of the implementation class:
type
 TNumberProp = class(TTypedComObject, INumberProp)
 private
 fValue: Integer;
 protected
 procedure Increase; safecall;
 function Get_Value: Integer; safecall;
 procedure Set_Value(New: Integer); safecall;
 public
 procedure Initialize; override;
 destructor Destroy; override;
 end;

Marco Cantù, Delphi 2009 Handbook

290 - Chapter 9: COM Support in Delphi 2009

When everything works fine, porting existing code will be smooth. What
might happen, though, is that if you set up the wrong calling convention
(and the IDE picks the wrong calling convention despite your settings),
you'll see both the interface and the implementation class having extra
methods with the stdcall convention and the HRESULT return value dir-
ectly visible. If this happens, the extra methods are added to the class,
aliased as the class already has similarly names methods, and this can really
mess up the code, preventing it from compiling and making it far from
trivial to restore it (unless, of course, you got back to the previous version in
the file history or simply avoid saving the modified file).

Registering and Calling the Server
Now that I have recompiled the server, I can register it in the system to be
able to call it (and also use the new Registered Type Libraries pane of the
Delphi IDE). After compiling, you can use the menu command Run |
Register ActiveX Server. The first time I did it, it raised the following so-ter-
ribly-descriptive error: Unspecified Error. It turns out, if you are running
the IDE on Vista with User Account Control (UAC) active, you cannot per-
form this step as the IDE will not try to elevate the user operation. By
running the IDE as administrator, the registration succeeds. Here are the
two messages:

Marco Cantù, Delphi 2009 Handbook

Chapter 9: COM Support in Delphi 2009 - 291

The New Registered Type
Libraries Pane

Once the server is registered you can double check it is in the system by
opening the new Registered Type Libraries view of the Delphi IDE, using
the corresponding command located under the View menu.

This editor pane lists all registered type libraries (or ActiveX controls) on
the system, let's you unregister any of them, register new ones, search the
list of type libraries. As you can see below, the list should include our newly
registered library:

Notice you cannot use this dialog to import a type library or create a client
wrapper for it. For this purpose you need to use the revamped type library
importer. Select the Component | Import Component menu item, and pick
the Type Library option, as shown in the next page:

Marco Cantù, Delphi 2009 Handbook

292 - Chapter 9: COM Support in Delphi 2009

The next step should be to choose one of the registered types libraries or add
a new one. As the list is generally very long, the new search box will come
quite handy to find the specific type library you are looking for, in this case
one of those with the word “simple” in them:

Marco Cantù, Delphi 2009 Handbook

Chapter 9: COM Support in Delphi 2009 - 293

The following step lets you add the component to a package, generate an
import unit, or add it directly to the current project. In any case, you'll end
up with a type library import file almost identical to the one generated on
the server side by the type library editor (or, to be more precise, by pro-
cessing the RIDL file).

I've performed the steps above in the SimpleClient project, which is the new
edition of another project that was part of Mastering Delphi 2005 and previ-
ous volumes of the series. The program creates two COM objects from the
server at start up, hooks them to buttons and spin edits, and has a third but-
ton for dynamically creating a temporary object. (One of the goals of the
original project was to showcase COM objects lifetime, which is why
whenever an object is destroyed the server will display a message box).

This is the do-it-all code snippet, which used the generated CoClass:
var
 Num3: INumberProp;
begin
 // create a new temporary COM object
 Num3 := CoNumberProp.Create;
 Num3.Value := 100;
 Num3.Increase;
 ShowMessage ('Num3: ' + IntToStr (Num3.Value));
end;

Again, there is very little (if anything) you have to do on the client side of a
COM application to move it to Delphi 2009. However, if you are creating a
new client project, as I did, you'll probably like the improvements in the type
library import wizard.

COM and Unicode
One of the reasons changes in COM support and COM clients in particular,
are limited is due to the fact that COM applications generally don't use plain
Delphi strings but rely on the native and COM-enabled WideString type (or
BSTR in COM terms). As we saw in Part I of the book, the WideString type
already used two-bytes per characters and did not change since Delphi
2007. The reason this less-efficient string type is still round is for COM and
Automation support, so it should come at no surprise I'm talking about it in
the section focused on COM.

Marco Cantù, Delphi 2009 Handbook

294 - Chapter 9: COM Support in Delphi 2009

In slightly more technical terms, one of the advantages of the WideString
type is that you can use it in a remote server call as its data can be mar-
shalled to a COM Automation server. This won't be the case for
UnicodeString, a data type which makes sense only in Delphi and not in
other languages (with the notable exception of C++Builder 2009, of course).

Returning Features: Active Forms
Some other features from the Delphi 7 times got back into Delphi 2009 after
a long absence. One of them is the ActiveX Control Wizard (including Active
Forms). Notice, though, that this wizard doesn't generate the proper HTML
deployment files as it did in the past. Actually most of the COM-related wiz-
ards have been improved graphically (and partially in their feature set) for
Delphi 2009, as you can see in the overview provided by Chris Bensen in his
sneak peek blog post at:
http://chrisbensen.blogspot.com/2008/07/
 tiburn-sneak-peek-com-wizards.html

As an example I've created a new ActiveX library, and added to it an Active
Form (picking the icon of the ActiveX page of the New Items dialog box):

Marco Cantù, Delphi 2009 Handbook

Chapter 9: COM Support in Delphi 2009 - 295

I've then added a standard About box, generated the Active Form, saved
everything, and added a button to the Active Form button that displays
some versions of the “What is Unicode?” sentence in different languages
and alphabets in a Memo control.

Now I can compile and register the ActiveX Library, but how do I get the
form to display in Internet Explorer? I opened up a very old Active Form
project (a Delphi 5 project, to be precise), grabbed the HTML Delphi gener-
ated for it, and replaced the GUID in it with the CoClass GUID and the
ActiveX library name with the current one:
<html>
 ...
 <object
 classid="clsid:AE64FD40-25C5-4697-B19C-8CE781695B71"
 codebase="./MyActiveForm_Project.ocx"
 width=570
 height=328
 align=center
 >
 </object>
</html>

At this point I can open the HTML file (in the same folder as the OCX lib-
rary) with Internet Explorer, pass a couple of security warnings like:

and continue to the HTML page embedding the ActiveX form:

Marco Cantù, Delphi 2009 Handbook

296 - Chapter 9: COM Support in Delphi 2009

Building an ActiveForm in Delphi 2009 is an interesting exercise to bring
back memories of a time Microsoft was trying to impose a proprietary and
Windows only model to the web, a tentative initiative that utterly failed. But
does it make any technical sense to use it now? As much as I disliked the
unsafe ActiveX technology back them, and with all of the extra power
(including more open client technologies) you have now at the browser
level, I'd generally say no.

Still, there are specific in-house situations for which a simplified deploy-
ment would make things easier... or some not-so-smart customers for which
a web application is good as it runs in the browser. In these niche situations,
if you already have an investment in this technology, it might make sense to

Marco Cantù, Delphi 2009 Handbook

Chapter 9: COM Support in Delphi 2009 - 297

go for it... but the sooner you can move away from a vision of a Win32-only,
Internet Explorer-only Internet, the better.

What's Next
In this short chapter I've explored some of the most significant changes to
COM support in Delphi 2009, including the new RIDL files, the different
role of type libraries, and some of the updated Wizards and IDE tools. I did-
n't have room to describe the COM technology in any detail, as this used to
take two large chapters in my Mastering Delphi series.

Now that we've seen all the changes to the core VCL and its COM subsystem,
it is time to focus on the single most interesting visual feature of the VCL in
Delphi 2009, the brand new Ribbon control.

Marco Cantù, Delphi 2009 Handbook

298 - Chapter 9: COM Support in Delphi 2009

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 299

Chapter 10: The
Ribbon

In the early 80s, along with the initial advent of the PC revolution, IBM
decided to try standardizing rules for the user interface of (at the time DOS-
based) PC applications. This specification was called Common User Access
(CUA) and Microsoft championed it for many years in DOS programs and in
all early versions of Windows, to the point that it has become a natural way
of interacting with most programs. You know that the Copy and Paste com-
mands will be under an Edit menu and you have to look under File for
saving or loading a document, so there is one less thing you have to learn for
every new program.

Even if there were many additions to CUA, including toolbars, shortcut
menus, command bars, and more, its core structure held for about 20 years.
Microsoft broke away from this rule for the first time in Office 2007 (and
partially in Windows Vista) with the definition of a new user interface
paradigm, called Fluent User Interface. This interface is generally known as
the Ribbon Interface from its core visual element.

Marco Cantù, Delphi 2009 Handbook

300 - Chapter 10: The Ribbon

I don't want to delve into the debate here as to whether this was really a
good move or not (I do have a few doubts), but only focus on the fact that
this user interface and its set of stringent rules is not trivial to implement
without some ready-to-use visual components. Delphi 2009 has such a set
of visual controls, which are the subject of the current chapter. They were
developed for CodeGear by Jeremy North131.

Introducing the Fluent User
Interface

As mentioned above, the Fluent User Interface was invented by Microsoft,
who are seeking a patent for it132. This patent doesn't focus on the code
behind the user interface (the ribbon controls used in Office 2007), but on
the design of the user interface itself. Microsoft also refers to this user inter-
face as “Microsoft for the Office UI.”

This means that the Microsoft patent, if granted, will still apply even if the
VCL implementation available in Delphi 2009 is a brand new version of the
controls (in no way related with the code that Microsoft uses in Office and
other applications, and that Microsoft doesn't license). That's why we have
to look at the “legal side” of this component before looking at its use.

Notice that unlike other guidelines, the Office Fluent UI Design Guidelines,
describing how applications based on the Ribbon should work, are not pub-
lic, but are “Microsoft’s confidential information”.

131 Jeremy North is the author of several Delphi components, IDE extensions, and tools
for developers (including the extended Quality Central client). He did also a lot of
work to help with the development of Compact Framework programs written in
Delphi for .NET. You can find more about Jeremy at his site, http://www.jed-soft-
ware.com.

132 Information about this patent request and the related discussion can be found on
Wikipedia at: http://en.wikipedia.org/wiki/Ribbon_(computing).

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 301

The Legal Side of the Ribbon
When you install Delphi 2009, you'll be presented with a rather strange
looking dialog (which was required by Microsoft):

As you can see, Microsoft asks anyone that wants to use their Fluent User to
accept the terms of their Office UI license. This license is royalty free, but
there are guidelines and limitations related with what you can do. The most
significant issue is that you are not allowed to create programs which com-
pete directly with Microsoft Office. There are also UI guidelines you have to
follow, as you cannot adapt the Ribbon UI to your desire, but have to make
it work in a way that is consistent with Microsoft's own approach. For fuller
information, refer to the web site mentioned in the dialog box displayed
earlier and to registration site:
http://msdn.microsoft.com/officeui
http://msdn.microsoft.com/en-us/office/aa973809.aspx

Once you agree with the license and register your application you'll be able
to download the 119 page PDF with the Office UI design guidelines.

A First Simple Ribbon
My first Ribbon example is a very bare-bones demo showing how the com-
ponent works, but actually providing no real user interface. As we'll see in
the next section, the only real way to create a complete Ribbon-based user
interface is to use the Action Manager architecture along with it. It is pos-
sible to use the Ribbon component without Actions, but it is very clumsy
and extremely limited... so after a simple example I'll move in that direction.

Marco Cantù, Delphi 2009 Handbook

302 - Chapter 10: The Ribbon

We can, in fact, start some initial experiments with a plain Ribbon compon-
ent, creating tabs and groups, and placing a couple of standard components
into them. To follow my steps, simply create a new application and place a
Ribbon component on its main form. Once you have that component in
place you can use its shortcut menu (selecting it in the form or in the Struc-
ture pane) to add a new tab. The same menu will let you remove a tab or add
the Application menu and Quick Access toolbar, as we'll see later on. You
can also work on the Ribbon Tabs by using the Tabs collection of the Ribbon
component (technically a collection of TRibbonTabItem objects, each of
which is connected with a TRibbonPage, a sort of panel) and the related
AddItem command. This is available in the Structure view:

The header of a Ribbon with two tabs and pages looks like this at design
time in the Delphi 2009 IDE:

In this case I've kept on the (default) ShowHelpButton property that shows
the question mark in the top right of the control, I've also kept on the
UseCustomFrame property (something I'll cover later on).

Here are a few other properties of the Ribbon control of the BareBoneRib-
bon example:
 object Ribbon1: TRibbon
 Caption = 'Ribbon Caption'
 DocumentName = 'Document Name'
 Tabs = <
 item
 Caption = 'RibbonPage1'
 Page = RibbonPage1
 end
 item
 Caption = 'RibbonPage2'
 Page = RibbonPage2
 end>
 StyleName = 'Ribbon – Luna'

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 303

 object RibbonPage1...
 object RibbonPage2...
 end

Once you have one or more Ribbon tabs, you can add Ribbon groups (or
boxes) to them. Again, you can work with the shortcut menus of the com-
ponents right in the form or in the Structure pane. Here is how a Ribbon
page with a few (empty) groups can look:

On a Ribbon page, you can add a group, remove a group, or reorder groups,
through a simple specific dialog box (which tends to be easier to use, rather
than dragging groups around the Ribbon page, hoping they'll stick in place).

What can you place in a group? You generally populate them with elements
of various types, from commands to options, that are connected with
Actions of an ActionManager component. If you want to hack something
together, most certainly diverging from the Ribbon UI specification, you can
add plain buttons or special purpose RibbonSpinEdit controls to the groups,
as I've done in this demo. Again, this is not the recommended approach,
although the RibbonSpinEdit control itself does fit within the Ribbon UI
specification.

You can see the first two populated pages of my demo at runtime in the
screen shot below:

Marco Cantù, Delphi 2009 Handbook

304 - Chapter 10: The Ribbon

This form is different from the usual one, because its caption and standard
borders have been replaced by a special custom frame, painted by the Rib-
bon control itself. This is the default style for the Ribbon UI, with further
graphical elements (like the Application menu) added, as we'll see later.

You can indeed disable the UseCustomFrame property. I've done that at
runtime, when a user unchecks the check box, with this code:
procedure TFormBareBoneRibbon.cbShowBorderClick(
 Sender: TObject);
begin
 Ribbon1.UseCustomFrame := cbShowBorder.Checked;
 self.RecreateWnd;
end;

Although this works when removing the custom frame, if you re-enable it
the forms border won't be repainted properly133. I guess it currently makes
sense to trigger this property at design time or when the form is created.

Another important setting to keep in mind is that if Ribbon control is
reduced below the size of 300x250, it will be displayed in a minimized state
(again, according to the Ribbon UI specification). If you want to avoid this,
as some users might get confused, you can indicate minimum width and
height settings for the form:
object FormBareBoneRibbon: TFormBareBoneRibbon
 Caption = 'BareBoneRibbon'
 Constraints.MinHeight = 270
 Constraints.MinWidth = 320
 ...

The size is computed by adding some extra space for the borders to the min-
imum Ribbon size. This is something you have to remember doing in each
form that uses the Ribbon control.

Actions and The Ribbon
As I mentioned a few times already, the Ribbon control is based on Delphi's
ActionManager architecture. We'll see how to create a Ribbon-based UI with
these components in the next example. Before I get to that, however, I need

133 This is a bug that will be fixed. As a workaround you can use the code provided in the
bug report at http://qc.codegear.com/wc/qcmain.aspx?d=68955.

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 305

to recap the key features of this architecture for those who've never used
it134. If you used the ActionManager component in the past, you can skip the
next two sections and jump to “Actions and Ribbon in Practice.”

From Events to Actions
Delphi’s event handling architecture is very open: You can write a single
event handler and connect it to the OnClick events of a toolbar button and a
menu. You can also connect the same event handler to different buttons or
menu items, because the event handler can use the Sender parameter to
refer to the object that fired the event. It’s a little more difficult to synchron-
ize the status of toolbar buttons and menu items. If you have a menu item
and a toolbar button that both toggle the same option, then every time the
option is toggled, you must both add the check mark to the menu item and
change the status of the button to show it pressed.

To overcome this and similar problems, Delphi includes an event-handling
architecture based on actions. An action (or command) plays two separate
roles at the same time:

● It indicates the operation to accomplish when user interface ele-
ments (menu item, button) connected to the action are activated,
with its OnExecute event handler.

● It determines the status of the user interface elements (or clients)
connected to the action, including their textual description, enable
status, check status, and so on.

The connection of the action with the user interface of the linked controls is
very important and should not be underestimated, because it is where you
can get the real advantages of this architecture.

In practice, an action object has properties that will be applied to the linked
controls (called action clients). These properties include, among others, the
Caption, the graphical representation (ImageIndex), the status (Checked,
Enabled, and Visible), and user feedback (Hint and HelpContext).

134 This introduction to actions and the ActionList and ActionManager components has
been extracted from my book “Mastering Delphi 7” and edited somewhat. The origin-
al version has also a few specific examples to explain the concepts I've omitted in this
summary.

Marco Cantù, Delphi 2009 Handbook

306 - Chapter 10: The Ribbon

The base class for all action objects is TBasicAction, which introduces the
abstract core behavior of an action, without any specific binding or connec-
tion (not even to menu items or controls). The derived TContainedAction
class introduces properties and methods that enable actions to appear in an
action list or action manager. The further derived TCustomAction class
introduces support for the properties and methods of menu items and con-
trols that are linked to action objects. Finally, there is the derived ready-to-
use TAction class.

Each action object is connected to one or more client objects through an
ActionLink object. Multiple controls, possibly of different types, can share
the same action object, as indicated by their Action property. Technically,
the internal ActionLink objects maintain a bidirectional connection between
the client object and the action.

The client controls connected to actions are usually menu items and various
types of buttons (buttons, check boxes, radio buttons, speed buttons, toolbar
buttons, and the like). Remember that you should not set the properties of
the client controls you connect with an action, because the action will over-
ride the property values of the client controls. For this reason, you should
generally write the actions first and then create the menu items and buttons
you want to connect with them. When you are using the Ribbon control,
that's the only way to proceed, so there is no alternative to the best practice.

The ActionList and ActionManager
Components

Action objects exists in memory but are not VCL components. In fact, they
are managed by container components, called ActionList and ActionMan-
ager. The former is an older and simpler actions container, the latter
introduced user interface integration and generation, which are being exten-
ded. The ActionList component has a special component editor you can use
to create several actions (including many predefined actions) and manage
them. Actions are grouped in textual categories:

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 307

The ActionManager component, originally introduced in Delphi 6, has fur-
ther options to let you create and manage an user interface for the actions.
Beside the collection of actions, the ActionManager has a collection of tool-
bars and menus tied to them. The development of these toolbars and menus
is completely visual: You drag actions from a special component editor of
the ActionManager to the toolbars to access the buttons you need. Notice
that working with the Ribbon is somewhat similar; you can drag actions to
Ribbon groups to have ready-to-use Ribbon command buttons.

Components of this architecture include, beside the ActionManager com-
ponent itself, an ActionMainMenuBar control, an ActionToolBar control, a
PopupActionBarEx component, and a CustomizeDlg component used to let
end users customize the user interface. These visual components are not
used when you work with a Ribbon, so I don't want to cover them in detail.
Instead, let me build a step by step example using the ActionManager and a
Ribbon control.

Actions and Ribbon in Practice
After this fast-paced introduction to Delphi's Action Manager architecture,
let's start creating an actual demo. The first step, of course is to create a VCL
application and add an ActionManager component to its main form. Next
you can drop a Ribbon control onto the form. The control should automatic-
ally hook itself to the action manager, if not use its ActionManager
property.

Before adding any action to the ActionManager, add ImageList controls and
connect them to it. Adding standard actions, in fact, will automatically pop-
ulate the image lists. Add one ImageList for the standard Images of the

Marco Cantù, Delphi 2009 Handbook

308 - Chapter 10: The Ribbon

ActionManager (standard images are used for the Ribbon commands) and
one for the LargeImages property (used by the Ribbon application menu
and by large buttons in any Ribbon Group). You should have settings like:
object RibbonEditorForm: TRibbonEditorForm
 Caption = 'RibbonEditor'
 Constraints.MinHeight = 300
 Constraints.MinWidth = 400
 object Ribbon1: TRibbon
 ActionManager = ActionManager1
 Caption = 'RibbonEditor'
 StyleName = 'Ribbon - Luna'
 end
 object ActionManager1: TActionManager
 LargeImages = listLarge
 Images = listStandard
 StyleName = 'Ribbon - Luna'
 end
 object listStandard: TImageList...
 object listLarge: TImageList...
end

As my goal is to create a simple editor (not a full word processor as I don't
mean to infringe the Ribbon license, you know), I basically need to place a
RichEdit control aligned to the client area of the form and add most of the
standard actions for editing (the 6 standard actions of the Edit category),
rich edit support (the 8 standard actions of the Format category), file sup-
port (the 8 standard actions of the File category), and a few more (Download
action of the Internet category and Font action of the Dialogs category).

Groups And Commands
Now that I have all of these actions in place, I can create a Ribbon user
interface for them. After creating two tabs and a few groups, I can drag
actions into the groups. Here are a couple of groups:

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 309

These groups host direct commands, so there is nothing specific to set.
Another group has a set of non-exclusive options, like setting the text in bold
and italic. For the action items of such a group it is better to pick the
csCheckBox value for the CommandStyle property (rather than the default
csButton). The effect is to have a set of check boxes you can toggle by either
selecting the check area or the icon and the text of the command. This is an
example from the demo:

The only exception to dragging actions into groups is represented by the
Font Dialog action, that I can hook as dialog action to one of the groups,
using its the group DialogAction property. This adds a small graphical ele-
ment in the bottom right corner of the group, as in the previous image.

Another option is to have alternative options, represented by radio buttons,
setting the CommandStyle property to csRadioButton, with this visual
effect:

As you select one the items of a Ribbon group, you'll see the various proper-
ties for the corresponding TActionClientItem object. But how are these
objects managed? It turns out that the ActionManager component will have
a “toolbar” for each group of the Ribbon, as you can see in the ActionMan-
ager component editor.

Even better, you can see the actual internal structure of these objects using
the Structure view and expanding the ActionManager component collection,
not those of the Ribbon! Here is a small portion of it for the RibbonEditor
demo (and the visual elements covered earlier):

Marco Cantù, Delphi 2009 Handbook

310 - Chapter 10: The Ribbon

This means you can navigate among the elements in the various Ribbon
groups in a less visual but more detailed way, selecting elements that are not
visible, picking up small separators, and even adding new ActionClientItem
objects. You will be able to configure these new ActionClientItem objects by
defining text elements and separators, picking actions, or connecting them
to visual controls.

Application Menu
To complete our application, for which we hooked several custom actions
but had to write no actual code, we should add two other relevant elements
of the Ribbon user interface. Both are added using commands of the Ribbon
component editor (the shortcut menu that appears at design time when the
component is selected) and can be added only if the ActionManager is set.

The first key element is the Application menu, the round control element in
the top left corner of the Ribbon replacing the traditional Windows applica-
tion menu. Here is the component at runtime in the demo:

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 311

This element features a drop down menu that would be initially empty. The
idea is to use it for file-related operations, and you can add the various
standard File Open and Save actions to it. Again, it is possible to drag
actions to this toolbar, but it is not easy, as it tends to close down. I find it
easier to select it in the Structure view, add items, and hook each item to the
corresponding action.

If the left of the Application menu is simply a list of file-oriented actions
with large icons, the right side should host a list of recently used files. The
Ribbon control has specific support for handling this “most recently used”
(MRU) list135. In this simplified demo I've decided to handle only the Load
and Save As operations. Each of them adds an entry to the MRU list by call-
ing a custom method that, in turn, invokes the AddRecentItem method of
the Ribbon control. This operation adds a new entry at the top of the Recent
Documents list, eventually deleting an existing entry referring to the same
file name.

The OnAccept events of the FileOpen1 and FileSaveAs1 actions have the
following (similar) code, which calls the custom AddToMru method listed
below them:
procedure TRibbonEditorForm.FileOpen1Accept(
 Sender: TObject);
begin
 RichEdit1.Lines.Clear;
 RichEdit1.Lines.LoadFromFile(FileOpen1.Dialog.FileName);
 Ribbon1.DocumentName := FileOpen1.Dialog.FileName;
 AddToMru(FileOpen1.Dialog.FileName);
end;

procedure TRibbonEditorForm.FileSaveAs1Accept(
 Sender: TObject);
begin
 RichEdit1.Lines.SaveToFile(FileSaveAs1.Dialog.FileName);
 Ribbon1.DocumentName := FileSaveAs1.Dialog.FileName;
 AddToMru(FileSaveAs1.Dialog.FileName);
end;

procedure TRibbonEditorForm.AddToMru(

135 In the source code of the demo you'll also find the code I wrote to manually manage
the MRU list, using a common action and processing the caption on selection. Con-
sidering the good quality of the automatic support, I don't think it is worth exploring
the manual approach. The reason I left it in the code is it shows how to dynamically
extend the Ribbon user interface and use actions shared among different client ele-
ments.

Marco Cantù, Delphi 2009 Handbook

312 - Chapter 10: The Ribbon

 const strFilename: string);
begin
 Ribbon1.AddRecentItem(strFilename);
end;

When one of the MRU list items is selected, the Ribbon control triggers an
OnRecentItemClick event handler, which I've coded in a quite naïve way,
as it doesn't check if the file is already active in the editor. Also, this inform-
ation is not saved between sessions. All I wanted to show is how you can
manually populate the most recently used list, obtaining an effect like:

This is the event handler for the MRU list selection:
procedure TRibbonEditorForm.Ribbon1RecentItemClick(
 Sender: TObject; FileName: string; Index: Integer);
begin
 RichEdit1.Lines.Clear;
 RichEdit1.Lines.LoadFromFile(FileName);
 Ribbon1.DocumentName := FileName;
end;

The right page of the Application Menu can also be used to display buttons,
by setting the CommandType property of the ApplicationMenu object of the
Ribbon control to ctCommands (rather than the default ctRecent). In this
case, any item added to the RecentItems collection will appear as a button.
This is demonstrated by the Application Menu demo that ships with Delphi
2009, an interesting example as it works in a similar way to Office 2007.

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 313

Quick Access Toolbar
The second graphical element of the Ribbon is its Quick Access Toolbar, a
toolbar with system operations automatically managed by the system. This
is added on the right of the round Application menu selector, in this case
showing a couple of actions (Save As and Exit):

Next to the actions there is also the customize drop down button that lets a
user add extra commands to this toolbar, something quite powerful but that
you might want to disable136.

With these steps I have build a very simple but somewhat complete Ribbon-
based editor. If you look among the samples that ship with Delphi you'll find
one with extra features and a nicer looking user interface, but no manage-
ment of the most recently used files.

Supporting Key Tips
After all of these steps we have a fully working application with a nice Fluent
UI. Users can click on the various visual elements (tab pages, controls) to
work with it. But what about using the keyboard? Beside the fact you can
still associate shortcut keys to the various actions (like a classic Ctrl-C for
Copy), the Ribbon has its own keyboard-enabled interface.

All you have to do it to provide an appropriate value for the KeyTip property
of each of the Ribbon user interface elements (tabs, groups, action items),
and you'll be able to activate them using the Alt key. For example, in the
RibbonEditor I've set the following key tips for pages, groups, and action
items:
RibbonPage1 'Editing' KeyTip = 'E'
RibbonPage2 'Advanced' KeyTip = 'A'

136 Letting users customize their toolbars is a feature I find debatable. Power user cer-
tainly benefit from it, but you might get a extra support calls from newbies who can-
not figure out why their favorite toolbar buttons have disappeared. As 80% of users
generally use only 20% of the features, over-customization is not always a good idea.

Marco Cantù, Delphi 2009 Handbook

314 - Chapter 10: The Ribbon

RibbonGroup1 'Copy&Paste' KeyTip = 'C'
RibbonGroup2 'Edit' KeyTip = 'E'
RibbonGroup3 'Style' KeyTip = 'S'
RibbonGroup4 'Alignment' KeyTip = 'A'
RibbonGroup5 'Paragraph' KeyTip = 'P'

item Action = EditCopy1 KeyTip = 'C'
item Action = EditPaste1 KeyTip = 'P'
items Action = EditCut1 KeyTip = 'T'
items Action = EditDelete1 KeyTip = 'D'
items Action = EditUndo1 KeyTip = 'U'
items Action = EditSelectAll1 KeyTip = 'S'

The value of the KeyTip should be one or more uppercase letters137 or num-
bers, and the effect is to visually display the alternative key tips of the given
selection level as the user presses the Alt key (don't hold it, just press it
once) and follows with the various selections. By displaying the actual key
tips to the user, it teaches the user the proper shortcuts over time. As an
actual example, when you press (and release) the Alt key in the RibbonEd-
itor demo, you'll see:

Only the first level key tips are displayed, now if you press the E key, activat-
ing the Editing tab, the Ribbon will show the keys for the individual action
items and the groups, but only if the groups have a group dialog connected
(which happens for the Style group):

137 Don't use lowercase letters, as they simply don't work. In theory the Ribbon compon-
ent should convert them to uppercase automatically, but this doesn't seem to work
for now (in Delphi 2009 Update 1).

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 315

Don't forget to set the key tips for all of your Ribbon user interface elements,
or the use of the control will be limited for those preferring the speed of key-
board selection.

The Ribbon Components
We have already seen through a practical example the role of the various
Ribbon related components, from the Ribbon control itself to tabs and
groups. These provide the overall organization of the user interface, and
provide a wide range of options which I certainly cannot explore in detail
here. Even without trying for complete coverage, though, I can certainly
provide a few more hints.

Let's focus on the Ribbon group object first. One of the most important
visual features of a group is its GroupAlign property, which can be either
vertical or horizontal. Vertical might be better for large buttons, while hori-
zontal is preferred for having rows of related small buttons. You can also use
the Columns and Rows property of a group to change its overall layout. By
default, the Ribbon groups have a vertical layout with three rows, as three
buttons will fit in a group vertically. Remember that the Ribbon must be at
least a given height, and so must its groups (scrollbars are never displayed
in a Ribbon control).

Of course, if you set a button to be large, it will fill the entire group. In this
case (taken from the standard RibbonDemo that comes with Delphi), the
button is large and uses the split button style to show a drop down menu):

You obtain this effect by setting the proper styles of the ActionItem and
providing a few sub-items, hooked with other actions:
item
 Action = EditPaste1
 CommandProperties.ButtonSize = bsLarge
 CommandProperties.ButtonType = btSplit
 Items = <
 item

Marco Cantù, Delphi 2009 Handbook

316 - Chapter 10: The Ribbon

 Action = EditPaste1
 end
 item
 Action = EditPasteSpecial
 end
 item
 Action = EditPasteHyperlink
 end>
 end
end

At the opposite, you can have small buttons with no captions using a hori-
zontal layout. Here is an example of a group with two rows of command
buttons:

The key properties of this group are:
object RibbonGroup8: TRibbonGroup
 Caption = 'Lines'
 GroupAlign = gaHorizontal
 Rows = 2
end

But how do you obtain the graphical effect of the grouped buttons? This is
not automatic, as you have to modify the TActionClientItem objects of
the group, removing the caption (turning off the ShowCaption property),
setting a specific value for their CommandProperties.GroupPosition
sub-property, and using the NewRow property as required:
Items = <
 item
 Action = RichEditAlignCenter1
 CommandProperties.GroupPosition = gpStart
 end
 item
 Action = RichEditAlignRight1
 CommandProperties.GroupPosition = gpMiddle
 end
 item
 Action = RichEditAlignLeft1
 CommandProperties.GroupPosition = gpEnd
 end
 item
 Action = RichEditUnderline1

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 317

 NewRow = True
 CommandProperties.GroupPosition = gpStart
 end
 item
 Action = RichEditItalic1
 CommandProperties.GroupPosition = gpMiddle
 end
 item
 Action = RichEditBold1
 CommandProperties.GroupPosition = gpEnd
 end>
 ActionBar = RibbonGroup8
end

This might seem a lot of manual work, but it let's you have a lot of control
over the exact placement of the elements, rather than trusting some internal
algorithm that might not work as you like.

Coming to action items, beside positioning and many other graphical ele-
ments, the most important decision you have to make is to pick the core
user interface and behavior. If you pick a button, as in most of the cases of
this demo, you can still use the TButtonProperties structure connected
with the CommandProperties property I mentioned earlier. This let's you
pick a button size, a button type, a group position and a text association
using values of the following enumerations (defined as nested types):
type
 TButtonSize = (bsSmall, bsLarge);
 TButtonType = (btNone, btDropDown, btSplit,
 btGallery);
 TGroupPosition = (gpNone, gpStart, gpMiddle,
 gpEnd, gpSingle);
 TTextAssociation = (taImage, taDropdown);

What is very interesting to notice is that the object connected with the
CommandProperties property depends on the command type. So if you
pick, for example, a text element, you'll see properties like Alignment,
EllipsisPosition, and Font rather than those listed earlier for a button
command. But which are the available command types for Action Client
Items used by the Ribbon138?

138 In theory these command types could be used by any other visual container of action
links, as this is defined as part of the Action Manager architecture and not specifically
tied to the Ribbon. At the moment, though, all other action viewers and styles ignore
this property.

Marco Cantù, Delphi 2009 Handbook

318 - Chapter 10: The Ribbon

Here is a list provided by the documentation (that is, the source code of the
ActMan unit):

● csButton - command is a button

● csMenu - command is a menu

● csSeparator - command is a separator with a caption

● csText - command only displays text (clicking on it does nothing)

● csGallery - command displays a gallery (a feature not supported in
the current version of the Ribbon control)

● csComboBox - command has an office 2007 combo box (notice this
is automatically set when using the RibbonComboBox control)

● csCheckBox - command appears like an office 2007 check box

● csRadioButton - command appears like an office 2007 radio but-
ton

● csControl - command has a TControl associated with it

● csCustom - allows further expansion by third parties

An interesting case is the use of the csControl style, which lets you place
almost any graphical control of the VCL to the Ribbon. For example, in the
usual RibbonEditor demo, I've added a group with a ButtonedEdit control
with a right button and a TextHint and a microscopic TreeView control:

All I had to do was to manually add an ActionToolbar to the ActionManager
(using the Structure view), connect this toolbar with a new empty Ribbon
group, pick a control in the Tool Palette, and select the Ribbon Group to add
an action item connected with the corresponding control. Finally, I set the
proper width for the entire action item and its label. Here is the textual
definition of one of the ActionToolbar items:
item
 Items = <
 item
 Caption = '&Search:'

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 319

 CommandStyle = csControl
 CommandProperties.Width = 150
 CommandProperties.ContainedControl = ButtonedEdit1
 CommandProperties.LabelWidth = 50
 end
 item
 Caption = '&Pick:'
 CommandStyle = csControl
 NewRow = True
 CommandProperties.Width = 150
 CommandProperties.ContainedControl = TreeView1
 CommandProperties.LabelWidth = 50
 end>
 ActionBar = RibbonGroup7
end>

Again, the ActionManager architecture and the new Ribbon control with its
support classes have so many features, that I could go on for many more
pages covering them. Here, in any case, are a few more interesting sugges-
tions (not shown in practice in my demo):

● You can customize the Application menu, for example changing the
“Recent Documents” caption or the icon size by using the
ApplicationMenu property of the Ribbon control.

● Similarly, you can customize the behavior of the Quick Access menu
by setting various sub-properties of the QuickAccessToolbar
property of the Ribbon control

● The reason you don't set a size for the Ribbon groups but let them
adapt to the size of the contained items is due to a specific request of
the Fluent UI Design Guidelines.

● Users can right-click on Ribbon items to add them to the Quick
Access Toolbar and perform related operations.

Ribbons for Database Applications
It is quite obvious to see how the use of the Ribbon controls would apply to a
document oriented application, but what about programs doing totally dif-
ferent operations, like working on database data? Considering that we have
a set of standard database-related actions available, we might be tempted to
use the Ribbon to replace the classic DBNavigator, and this is indeed pos-

Marco Cantù, Delphi 2009 Handbook

320 - Chapter 10: The Ribbon

sible (and also quite simple to achieve). I'm not exactly sure this respects
Microsoft usage rules for the Fluent UI, but it certainly doesn't infringe the
rule of not cloning Office.

To create the DataRibbon application I had to place a ClientDataSet, with a
DataSource, and a DBGrid on a form for the database side; add an ImageL-
ist, an ActionManager, and a Ribbon for the user interface side. Now I had
to create a few custom actions (basically all of the custom DataSet actions
minus the Refresh action, plus the Undo action, and also the FileOpen and
FileExit actions), create a Ribbon tab with three groups and drag some of
the actions to them. No code was involved so far. Then all I had to do was
open the ClientDataSet on start-up, using the ClientDataSet file as Ribbon
document name, and do the same when the FileOpen operation is executed:
procedure TFormDataRibbon.FileOpen1Accept(
 Sender: TObject);
begin
 ClientDataSet1.Close;
 ClientDataSet1.FileName := FileOpen1.Dialog.FileName;
 Ribbon1.DocumentName := ClientDataSet1.FileName;
 ClientDataSet1.Open;
end;

This is almost the complete code of the program, everything else is a collec-
tion of settings stored in the DFM file and obtained with visual operations at
design time. Want to have a look at this settings? Here is a minimal sum-
mary, with tight typesetting (this is out of 788 lines of DFM source code),
worth looking at to get the overall picture of the relationship between the
Ribbon and the ActionManager:
object FormDataRibbon: TFormDataRibbon
 object Ribbon1: TRibbon
 ActionManager = ActionManager1
 Caption = 'DataRibbon'
 Tabs = <item Page = RibbonPage1 end>
 StyleName = 'Ribbon - Luna'
 object RibbonPage1: TRibbonPage
 Caption = 'DBNavigation'
 Index = 0
 object RibbonGroup1: TRibbonGroup
 Caption = 'Browse'
 GroupIndex = 1
 end
 object RibbonGroup2: TRibbonGroup
 Caption = 'Edit'
 GroupIndex = 2
 end

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 321

 object RibbonGroup3: TRibbonGroup
 Caption = 'File'
 GroupIndex = 0
 end
 end
 end
 object ImageList1: TImageList...
 object ActionManager1: TActionManager
 ActionBars = <
 item
 Items = <
 item Action = DataSetFirst1 end
 item Action = DataSetPrior1 end
 item Action = DataSetNext1 end
 item Action = DataSetLast1 end>
 ActionBar = RibbonGroup1
 end
 item
 Items = <
 item Action = DataSetDelete1 end
 item Action = DataSetEdit1 end
 item Action = DataSetInsert1 end
 item Action = DataSetPost1 end
 item Action = DataSetCancel1 end
 item Action = ClientDataSetUndo1 end>
 ActionBar = RibbonGroup2
 end
 item
 Items = <
 item Action = FileOpen1 end
 item Action = FileExit1 end>
 ActionBar = RibbonGroup3
 end>
 Images = ImageList1
 StyleName = 'Ribbon - Luna'
 object DataSetFirst1: TDataSetFirst...
 object DataSetPrior1: TDataSetPrior...
 object DataSetNext1: TDataSetNext...
 object DataSetLast1: TDataSetLast...
 object DataSetInsert1: TDataSetInsert...
 object DataSetDelete1: TDataSetDelete...
 object DataSetEdit1: TDataSetEdit...
 object DataSetPost1: TDataSetPost...
 object DataSetCancel1: TDataSetCancel...
 object ClientDataSetUndo1: TClientDataSetUndo
 Caption = 'Undo'
 FollowChange = False
 end
 object FileOpen1: TFileOpen
 Caption = '&Open...'

Marco Cantù, Delphi 2009 Handbook

322 - Chapter 10: The Ribbon

 Dialog.Filter = 'CDS|*.cds|XML|*.xml'
 Dialog.InitialDir = '...\CodeGear Shared\Data'
 OnAccept = FileOpen1Accept
 end
 object FileExit1: TFileExit...
 end
 object DBGrid1: TDBGrid
 Align = alClient
 DataSource = DataSource1
 end
 object DataSource1: TDataSource
 DataSet = ClientDataSet1
 end
 object ClientDataSet1: TClientDataSet
 FileName = '...\CodeGear Shared\Data\customer.cds'
 end

I could have extended the example with basic edit operations (like Copy and
Paste) and others, but I've basically reached my goal to prove that, even if a
little unusual, the Ribbon can be used for a database oriented program as
well. This is the program in action:

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 323

Using Screen Tips
Another elements of the Ribbon user interface is the use of large and
detailed hints, know as screen tips. Screen tips are generally used for the
Ribbon by hooking them to the various actions, but can be used also in
applications that don't use the Ribbon, and even in applications that don't
use actions. Delphi 2009 has specific support for screen tips with two differ-
ent components:

● The ScreenTipsManager component is the overall screen tips hand-
ler. It can handle screen tip details for each of the actions in a related
ActionList or ActionManager component, and has its own editor to
let you generate a screen tip for each action, as we'll see later.

● The ScreenTipsPopup control provides a specific user interface for
screen tips or can be hooked to any visual controls, providing a
screen tip for user interface elements not connected with actions.
This control still needs to be connected with a ScreenTipsManager
component.

Here I'll show you two different examples. The first is the stand-alone and
simple use of screen tips in an example that has no Ribbon and no actions.
The second will be an extension of a Ribbon demo featuring screen tips.

Screen Tips with No Ribbon
As I mentioned, you can use screen tips in applications that have no Ribbon.
To show this technique can be added to any program, I've taken a classic
Delphi “hello, world” kind of demo, a program with a list box, an edit, and a
button used to add the text of the edit to the list box.

I've added to classic demo a ScreenTipsManager component (with default
settings) and three ScreenTipsPopup controls, one for each visual control.
Each ScreenTipsPopup control has a ScreenTip property referring to a
TScreenTipItem: You can customize such items with a Header, an Image,
and a Description, among other properties. The ScreenTipsPopup has an
Associate property you can use to refer to the visual control to which the
screen tip is connected (this control must have its ShowHint property on).

Marco Cantù, Delphi 2009 Handbook

324 - Chapter 10: The Ribbon

Finally, if you want to hide the small glyph for the ScreenTipsPopup control,
you have to set the Visible property to False. This is what I've done in the
demo for 2 our of three controls. You can, in fact, show the screen tip only
when a user moves over this small glyph, only when a user moves over the
associated control (by hiding the glyph), or in both cases.

This is the screen tip of the Add button of the PlainTips demo:

Notice the small glyph for the hint connected with the list box on the left
side of the control (and to the left of the visible screen tip). Here are the
most relevant properties for the screen tips components of this example:
object FormPlainTips: TFormPlainTips
 object ScreenTipsPopup1: TScreenTipsPopup
 Associate = ListBox1
 ScreenTip.Description.Strings = (
 'List of text elements that were added')
 ScreenTip.Header = 'List'
 ScreenTip.Image.Data = {...}
 ScreenTip.ShowImage = True
 ScreenTipManager = ScreenTipsManager1
 end
 object ScreenTipsPopup2: TScreenTipsPopup
 Associate = btnAdd
 ScreenTip.Description.Strings = (
 'Add the text to the list box, avoiding...')
 ScreenTip.Header = 'Add Text'
 ScreenTip.Image.Data = {...}
 ScreenTip.ShowImage = True
 ScreenTipManager = ScreenTipsManager1
 Visible = False

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 325

 end
 object ScreenTipsPopup3: TScreenTipsPopup
 Associate = edText
 ScreenTip.Description.Strings = (
 'Text to be added to the listbox')
 ScreenTip.Header = 'Text'
 ScreenTip.Image.Data = {...}
 ScreenTip.ShowFooter = False
 ScreenTip.ShowImage = True
 ScreenTipManager = ScreenTipsManager1
 Visible = False
 end
 object ScreenTipsManager1: TScreenTipsManager
 FooterImage.Data = {...}
 end
end

Notice that one of the ScreenTipsPopup controls is visible, while another
has no footer. The footer shows some text and an optional image shared by
all screen tips and provided by the ScreenTipsManager component.

Screen Tips Manager and Actions
Even if you can use Screen Tips without a Ribbon and an ActionList or
Action Manager, the latter is the scenario in which they work best and for
which there is specific support. In fact, as you place a ScreenTipsManager
component in a form that uses an ActionList or ActionManager (with or
without a Ribbon control), you'll be able to use the various features of the
component editor, that is the commands of its shortcut menu:

● The Generate Screen Tips command will help you create a basic
screen tip for each action and connect them. If you have already
defined screen tips for some actions, they'll be preserved.

● The Regenerate Screen Tips command works like the previous com-
mand, but will remove all existing tips and let you start from scratch.

● The Edit Screen Tips command will let you view and customize all of
the action-related screen tips, with an easy-to-use editor.

As an example, I've used this feature for the RibbonEditor application, cre-
ating the RibbonEditorTips version of the program. All I had to do build a
first version was to add a ScreenTipsManager component, go to its
LinkedActionList collection and add an item referring to the ActionMan-

Marco Cantù, Delphi 2009 Handbook

326 - Chapter 10: The Ribbon

ager component of the example, and call its Generate Screen Tips shortcut
menu command. This generates a plain screen tip for each action.

To make the screen tips visible, though, you have to take two more steps: In
the form, you have to turn on the ShowHints property (as this is not avail-
able at the Ribbon control level); in the Ribbon control you have to assign
the ScreenTipsManager component to the ScreenTips property. This is
enough to have a basic tip showing up as you move the mouse over of the
items of the Ribbon user interface, as in the following case:

This is a very basic hint. You can customize it by editing the given screen tip
item in the ScreenTips collection of the ScreenTipsManager component:

However, to make things much easier, you should use the custom screen
tips editor instead by double-clicking on the ScreenTipsManager compon-
ent. This is how the editor looks for that given screen tip:

Marco Cantù, Delphi 2009 Handbook

Chapter 10: The Ribbon - 327

The summary of the properties for the RibbonEditorTips example, consider-
ing only differences from the previous version, are listed below:
object RibbonEditorForm: TRibbonEditorForm
 ShowHint = True
 object Ribbon1: TRibbon
 ScreenTips = ScreenTipsManager1
 end
 object ScreenTipsManager1: TScreenTipsManager
 FooterImage.Data = {...}
 LinkedActionLists = <
 item
 ActionList = ActionManager1
 Caption = 'ActionManager1'
 end>
 ScreenTips = <
 item
 Action = EditCut1
 Description.Strings = ('Cuts the selection...')
 Header = 'Cut'
 end
 item
 Action = EditCopy1
 Description.Strings = ('Copies the selection...')

Marco Cantù, Delphi 2009 Handbook

328 - Chapter 10: The Ribbon

 Header = 'Copy'
 ShowImage = True
 end
 ...
 end
end

What's Next
After touching on the RTL at the end of Part II of the book, in the last three
chapters I've covered the new features of VCL visual controls (Chapter 8),
the changes in COM support (Chapter 9), and the brand new Ribbon com-
ponent, based on the ActionManager architecture (the current chapter).

Another cornerstone of the VCL is its database support. The core database
technology hasn't changed since the last version, if you don't consider the
fact that it now supports Unicode. Actually, the TDataset class introduced
support for Unicode in past versions, but that was based on the WideString
type, not on the new UnicodeString type. Changes in the database access
architecture, including the dbExpress library, will be covered in the next
chapter, while the vastly improved DataSnap multi-tier architecture will be
the topic of Chapter 12.

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 329

Chapter 11:
Datasets And

DbExpress

With all the focus on Unicode and new Delphi language features, you might
get the impression that there is little new in Delphi 2009 for database
developers. This impression seems quite wrong. Not only does database
support now fully embrace Unicode, compared to the partial support for
metadata in past versions, but there are also several relevant new features in
dbExpress, including a brand new version of DataSnap that I'll cover in
Chapter 12. Here, instead, I'll focus on the core features of TDataSet and
related classes, the improved dbExpress, and touch on several associated
topics.

Marco Cantù, Delphi 2009 Handbook

330 - Chapter 11: Datasets and dbExpress

A Unicode ClientDataSet
Before we start looking into the changes to the database components in
Delphi 2009, I think it is worth first having a look at an example of a Uni-
code-based database application. To keep things simple, for now, I'll use a
ClientDataSet component filled dynamically with strings coming from mul-
tiple alphabets. In this example, called UniCds, the ClientDataSet data
structure is defined at runtime, in the OnCreate event handler of the main
form:
procedure TFormUniCds.FormCreate(Sender: TObject);
begin
 cds.FieldDefs.Clear;
 cds.FieldDefs.Add ('code', ftInteger, 0, True);
 cds.FieldDefs.Add ('uni', ftWideString, 30, False);
 cds.FieldDefs.Add ('ansi', ftString, 30, False);
 cds.CreateDataSet;
 cds.Open;
end;

The ClientDataSet is initially empty. You can type in the associated DBGrid
to add data, or press the btnPopulate button that fills the dataset with the
list of Unicode strings with the text “What is Unicode?” written in many lan-
guages, loaded from the UTF-8 text file produced by the StreamEncoding
example of Chapter 2.

 This is the code used to load the data, doing a behind the scenes conversion
from the UTF-8 file encoding to the UTF-16 encoding used by the Uni-
codeString type and by the wide string field:
procedure TFormUniCds.btnPopulateClick(Sender: TObject);
var
 I: Integer;
 sList: TStringList;
 strLine: string;
begin
 sList := TStringList.Create;
 try
 I := 1;
 sList.LoadFromFile('utf8text.txt');
 for strLine in sList do
 begin
 cds.InsertRecord([I, strLine, AnsiString(strLine)]);
 Inc (I);
 end;
 finally

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 331

 sList.Free;
 end;
end;

Nothing extraordinary, for sure, but it is nice to have such a simple and
straightforward solution for creating a multilingual application with output
like this:

What is different from past versions of Delphi, however, is not the code in
the ClientDataSet component. In fact, you could use the ftWideString
field type even in past version of the CodeGear IDE. Reading the data from
the file and adding to the database, would have been only slightly more com-
plicated. What was not easy to achieve was to display this data in a DBGrid
or any other visual data-aware (or non data-aware) component of the VCL.

Still, support for Unicode extends beyond the visual representation. The
techniques used in the past for supporting database field and table names
based on the Unicode character set were not based on the Delphi 2009 Uni-
codeString type, but on the WideString type, and have been considerably
modified in Delphi 2009.

Marco Cantù, Delphi 2009 Handbook

332 - Chapter 11: Datasets and dbExpress

Unicode in Datasets, Take 2
The TDataSet and TField classes were among the few classes already sup-
porting Unicode since Delphi 2006. That Unicode support, though, was
based on the WideString type, which is still available but is not the standard
approach used in Delphi 2009 for supporting Unicode. As we saw in
Chapter 2, the WideString type represents a less-optimized and non-refer-
ence counted type holding wide characters, originally introduced for COM
compatibility.

If you compare the source code of the database components of the VCL of
Delphi 2006 and Delphi 2009 you'll clearly see that most of the properties
declared as WideString have reverted to the predefined string type, up to the
point that the source code looks more similar to previous versions, like
Delphi 7 and Delphi 2005. For example, if you looked at the source code of
the TField class, in Delphi 2007 you could see the following properties:
type
 TField = class(TComponent)
 public
 property FullName: WideString read GetFullName;
 property DisplayLabel: WideString
 read GetDisplayLabel write SetDisplayLabel
 property FieldName: WideString
 read FFieldName write SetFieldName;
 property LookupKeyFields: WideString
 read FLookupKeyFields write SetLookupKeyFields;
 property LookupResultField: WideString
 read FLookupResultField write SetLookupResultField;
 property KeyFields: WideString
 read FKeyFields write SetKeyFields;

Now in Delphi 2009 these are all declared as string! In most cases the
change was highly compatible when moving to the WideString version, and
it remains highly compatible both if you are moving from recent versions of
Delphi or older ones. There are specific cases, though, in which you might
experience problems. Also, if for any reason you explicitly used the
WideString type, you should generally replace it with the UnicodeString
type (or even better the core, generic, string type).

Notice, though, that if the TField object and related definitions in the DB
unit have been converted from WideString to UnicodeString, this is not true
throughout the VCL. The data-aware controls, in fact, still reference the field

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 333

names using the old 2-bytes-per-character string type. As an example, in the
TDBEdit class you can see:
property DataField: WideString
 read GetDataField write SetDataField;

This is far from optimal, because this type is not reference counted and is
less efficient that the UnicodeString type. Also, as you'll generally use the
UnicodeString type in your source code, this implies string type conver-
sions.

Unicode String Lists
A strictly related change is the return to the TStrings type for lists of
strings, instead of the replacement TWideStrings type used in recent ver-
sions. In these cases, for compatibility reasons, there is often an overloaded
version that is compatible with the WideString implementation. For
example, the GetFieldsList method of the TDataSet class is now defined
as:
procedure GetFieldNames(List: TStrings);
 overload; virtual;
procedure GetFieldNames(List: TWideStrings);
 overload; virtual;

The potential problem with this approach is that if you wrote (or migrated)
your code to something like the following code139, it won't be optimized, as
the program will have to convert the string types:
var
 WideList: TWideStringList;
begin
 WideList := TWideStringList.Create;
 try
 cds.GetFieldNames (WideList);
 ShowMessage (WideList.Text);
 finally
 WideList.Free;
 end;
end;

139 This code snippet is taken from the UniCds demo, introduced at the beginning of the
chapter.

Marco Cantù, Delphi 2009 Handbook

334 - Chapter 11: Datasets and dbExpress

Such a program, left as it is, should compile and produce correct results
(while when moving database related code that used list of fields from
Delphi 7 to Delphi 2006 didn't always compile). My suggestion, though, is to
rewrite your code, locating any occurrence of the TWideStrings and
TWideStringList classes and moving them to the preferred TStrings
and TStringList types:
var
 List: TStringList;
begin
 List := TStringList.Create;
 try
 cds.GetFieldNames (List);
 ShowMessage (List.Text);
 finally
 List.Free;
 end;

Of course, if you have code that predates Delphi 2006, you can leave it as it
is and it will automatically be upgraded to use Unicode string lists.

Bookmarks
The TDataSet class manages bookmarks to keep track of a given record of
the dataset and let a program jump back to it. Technically bookmarks are
pointers to internal data structures, but (for many versions) they were
declared as if they were strings to take advantage of string reference count-
ing:
type
 TBookmark = Pointer;
 TBookmarkStr = string;

The TBookmarkStr type was used as data type of the Bookmark property of
the TDataset class. As I already mentioned in the section “Strings are...
Strings” of Chapter 3, these definitions have been modified in Delphi
2009140:
type
 TBookmark = TBytes;

140 With the new deprecated directive now taking a description as parameter, I'm not
really sure why this almost obsolete data type is simply commented as deprecated.
Using the proper directive in the case described here, would have issued a very clear
warning before the error message.

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 335

 TBookmarkStr = AnsiString;
 // deprecated use TBookmark instead.

 // from SysUtils:
 TBytes = array of Byte;

The data type of the Bookmark property of the TDataset class is now of
type TBookmark, that is a (reference counted) array of Byte. This means
that existing code that uses the Bookmark property is unlikely to compile
any longer.

For example, if you have the following legal code from a past version of
Delphi:
var
 bookm: TBookmarkStr;
begin
 // save curent position
 bookm := cds.Bookmark;
 // move away
 cds.First;
 // get back
 Cds.Bookmark := bookm;

as you compile it you'll see the error:
E2010 Incompatible types: 'AnsiString' and 'TBytes'

What you should do is change the code to:
var
 bookm: TBookmark;

A simple search and replace of TBookmarkStr with TBookmark in your
entire source code base will generally do.

Field Types and Strings
It is interesting to notice how the different field types are mapped to differ-
ent native string types. I'm specifically referring to the TStringField and
TWideStringField types, of course. The Value property for these field
types changed from earlier versions of Delphi, but it was kept the same until
Delphi 2007, despite the changes in metadata support (including the field
names, mentioned earlier):

Marco Cantù, Delphi 2009 Handbook

336 - Chapter 11: Datasets and dbExpress

Delphi 7 Delphi 2007 Delphi 2009

TStringField.Value string string AnsiString

TWideStringField.Value WideString WideString UnicodeString

In case your program uses a TWideStringField mapped to a Unicode
string field of the database, the data is kept in Unicode format. What hap-
pens, instead, when you access the AsString property of a TStringField
object? The implementation of the corresponding getter method remaps the
access to the AsAnsiString method, that forces the conversion of the string
buffer to the AnsiString type.

Notice that a TWideStringField object uses the same UTF-16 encoding of
a UnicodeString in Delphi 2009, while a TStringField object uses the
basic AnsiString type. You would need to write extra support code (which
won't be trivial to write) for using a different code page or UTF-8 encoding
with TStringField.

Other Dataset Enhancements
Beside the changes we've see that related to Unicode support and changes in
the string and PChar types, there are other relevant new features in the
TDataSet class, some meant for the end users, and some for the component
developers.

New Field Types
As we'll see in Chapter 12, the new multi-tier architecture of Delphi 2009 is
based on the use of datasets, records, and fields, both for passing paramet-
ers and results. This is why Delphi 2009 has many new field types, which
are not strictly meant for direct database processing. The new field types
are:
ftLongWord, ftShortint, ftByte, ftExtended,
ftConnection, ftParams, ftStream

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 337

While the first four represent language data types, the last three are clearly
meant for transferring higher level data structures (database connections,
parameters, and streams).

A More Virtual Dataset
When you need to extend an existing class of a library like the VCL, the only
way you can change the behavior of existing classes, without rewriting too
much code is to use inheritance. However, the problems often lies in the fact
that the derived class can modify only what's declared as virtual in the base
class.

So for example the fact that the method MoveBy is now declared as virtual in
the TDataSet class means that any TDataSet derived class can modify it
more easily.
function MoveBy(Distance: Integer): Integer; virtual;

Another very interesting case is when the base class has to create internal
support objects and does so using a virtual function, to let you customize the
type of the internal object (by using a derived type instead of the base one).
To make this possible, the classes of these internal objects should also have
a virtual constructor you can optionally replace and modify.

This is the area in which the dataset architecture has seen a helpful exten-
sion in Delphi 2009. Here is a list of support classes that now have virtual
constructors:
type
 TIndexDef = class(TNamedItem)
 constructor Create(Owner: TIndexDefs;
 const Name, Fields: string; Options:
 TIndexOptions); reintroduce; overload; virtual;

 TIndexDefs = class(TDefCollection)
 constructor Create(ADataSet: TDataSet); virtual;

 TFieldDefList = class(TFlatList)
 // from base class
 constructor Create(ADataSet: TDataSet); virtual;

 TFields = class(TObject)
 constructor Create(ADataSet: TDataSet); virtual;

Marco Cantù, Delphi 2009 Handbook

338 - Chapter 11: Datasets and dbExpress

In the TDataSet class for each of these and other data structures, there is
now a virtual function that returns the reference of the class to create:
type
 TDataSet = class
 protected {indirect creation of internal objects}
 function GetFieldDefsClass:
 TFieldDefsClass; virtual;
 function GetFieldDefListClass:
 TFieldDefListClass; virtual;
 function GetFieldsClass:
 TFieldsClass; virtual;
 function GetFieldListClass:
 TFieldListClass; virtual;
 function GetCheckConstraintsClass:
 TCheckConstraintsClass; virtual;
 function GetAggFieldsClass:
 TFieldsClass; virtual;
 function GetIndexDefsClass:
 TIndexDefsClass; virtual;
 function GetParamsClass:
 TParamsClass; virtual;

What these functions do in their implementation is to return the value of a
corresponding global variable holding the default class for the given internal
object:
var
 DefaultFieldDefsClass: TFieldDefsClass = TFieldDefs;
 DefaultFieldDefClass: TFieldDefClass = TFieldDef;
 DefaultLookupListClass: TLookupListClass =
 TDefaultLookupList;
 DefaultIndexDefClass: TIndexDefClass = TIndexDef;
 DefaultCheckConstraintClass: TCheckConstraintClass =
 TCheckConstraint;
 DefaultParamClass: TParamClass = TParam;
 DefaultParamsClass: TParamsClass = TParams;
 DefaultFieldsClass: TFieldsClass = TFields;
 DefaultFieldListClass: TFieldListClass = TFieldList;
 DefaultIndexDefsClass: TIndexDefsClass = TIndexDefs;
 DefaultFieldDefListClass: TFieldDefListClass =
 TFieldDefList;
 DefaultCheckConstraintsClass: TCheckConstraintsClass =
 TCheckConstraints;

This means that to globally customize all datasets in your application you
can modify these global variables, while if you need a specific dataset to
return a different internal object, you should do so by deriving a new class
and overriding one of the virtual functions mentioned earlier.

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 339

The case of the TLookupList class is slightly different, with the class trans-
formed into an abstract class and the derived class TDefaultLookupList
providing the actual implementation.

How can we take advantage of this new feature in practice? To demonstrate
how easy it is to customize these standard objects, I've written an example
called CustomFields. In the example I customize the field definition class
and also map field types to a custom field class, using the public array
DefaultFieldClasses.

CustomFields is a simple application with a ClientDataSet component, a
DataSource component, a DBGrid, a tool bar with a few buttons, and a
Memo control for logging information. The program defines a class for field
definitions, in which I've added an extra property, only for the sake of the
demo141:
type
 TMyFieldDef = class (TFieldDef)
 private
 FExtraDescription: string;
 procedure SetExtraDescription(const Value: string);
 public
 function ToString: string; override;
 property ExtraDescription: string
 read FExtraDescription write SetExtraDescription;
 end;

function TMyFieldDef.ToString: string;
begin
 Result := Name + ' - ' + ExtraDescription +
 ' [' + ClassName + ']';
end;

This custom class must be installed before the ClientDataSet is created (not
before it is opened) so I've added the following line to the initialization
section of the main form of the program:
initialization
 DefaultFieldDefClass := TMyFieldDef;

When clicking on the second toolbar button, the program modifies the
ExtraDescription property for the first field definition and the fetches it
along with more field definition class information:

141 It might be interesting to add into each field definition a reference to metadata in-
formation, a data dictionary, a field definition, or anything that would let you have a
more flexible and powerful data access layer.

Marco Cantù, Delphi 2009 Handbook

340 - Chapter 11: Datasets and dbExpress

procedure TFormCustomFields.btnFieldDefClick(
 Sender: TObject);
begin
 (ClientDataSet1.FieldDefs[0] as TMyFieldDef).
 ExtraDescription := 'This is the first column';
 Log ('ClientDataSet1.FieldDefs[0].ToString: ' +
 ClientDataSet1.FieldDefs[0].ToString);
end;

The output of this call is:
ClientDataSet1.FieldDefs[0].ToString:
 CustNo - This is the first column [TMyFieldDef]

The second customization is based on the definition of a custom string field
type derived from the AnsiString type:
type
 TMyStringField = class (TStringField)
 protected
 function GetAsString: string; override;
 end;

function TMyStringField.GetAsString: string;
begin
 Result := inherited GetAsString + ' is not Unicode';
end;

This class makes a rather odd customization, adding a fixed string to the
output of each AnsiString field. The simplest way to connect the custom
field class to all fields of a given type (whose internal format must be com-
patible) is to use the DefaultFieldClasses global array:
initialization
 DefaultFieldClasses [ftString] := TMyStringField;

Again there is a button asking for field class information, but the effect of
this code is clearly visible in the DBGrid:

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 341

In more complex situations you can override the dataset class and redefine
the GetFieldClass virtual method142. Again, by inheriting from a custom
dataset class you can customize the support classes specifically, while the
approach I've used triggers the change for each dataset of the current applic-
ation, which is something you might want or not.

Fields Extensions
Beside the change of some property types from WideString back to string, as
mentioned earlier in the section “Unicode in datasets, Take 2” the TField
class now has support for some of the new dataset field types (plus it differ-
entiates between AsString, which now returns a UnicodeString, and the
new AsAnsiString):
type
 TField = class(TComponent)
 public

142 It would also have been possible to customize the field definition to field mapping by
modifying the CreateField method of the TFieldDef class, if only the method
was virtual in the base class!

Marco Cantù, Delphi 2009 Handbook

342 - Chapter 11: Datasets and dbExpress

 property AsExtended: Extended
 read GetAsExtended write SetAsExtended;
 property AsAnsiString: AnsiString
 read GetAsAnsiString write SetAsAnsiString;
 property AsBytes: TBytes
 read GetAsBytes write SetAsBytes;

Notice despite the introduction of Unicode, database mapping didn't
change, because by default databases consider as string an AnsiString text,
and not a Unicode-enabled text, for which you need to use a specific field
type. That's why the classic ftString type, managed by the TStringField
class, is still based on AnsiString. If you want to have Unicode strings in
your database you need to use the ftWideString type and the correspond-
ing TWideStringField class, exactly like in past versions of Delphi. I've
already highlighted in the section “Field Types and Strings” how the two
string field types handle internal values.

There are also a few new TField derived classes, for handling some of the
new field types. Here is the first line of the declaration of these new classes,
so you can see which is the base class:
type
 TLongWordField = class(TNumericField)
 TShortintField = class(TIntegerField)
 TByteField = class(TIntegerField)
 TUnsignedAutoIncField = class(TLongWordField)
 TExtendedField = class(TNumericField)

With these new classes, the hierarchy of the TField classes defined in the
DB unit becomes even bigger. To help you get a full picture, I've provided a
complete class tree below :
TField
 TStringField
 TWideStringField
 TGuidField
 TNumericField
 TIntegerField
 TAutoIncField
 TSmallintField
 TShortintField
 TByteField
 TWordField
 TLongWordField
 TUnsignedAutoIncField
 TLargeintField // Int64
 TFloatField
 TCurrencyField

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 343

 TExtendedField
 TBCDField
 TFMTBCDField
 TBooleanField
 TDateTimeField
 TDateField
 TTimeField
 TSQLTimeStampField
 TBinaryField
 TBytesField
 TVarBytesField
 TBlobField
 TMemoField
 TWideMemoField // widestring memo
 TGraphicField
 TObjectField
 TADTField // Abstract Data Type
 TArrayField
 TDataSetField
 TReferenceField
 TVariantField
 TInterfaceField
 TIDispatchField
 TAggregateField

BLOB fields Considered ANSI
Most field types are fully compatible with past versions of Delphi. This is
particularly true for string types, despite the new UnicodeString support,
because fields managing ANSI strings and wide strings were and are still
different. Similarly, memo fields holding ANSI or Unicode strings are
mapped to the separate TMemoField and TWideMemoField field classes.
The only potential pitfall could arise with generic BLOB field used to store
string-based information. When accessing a TBlobField object as a string,
how should Delphi 2009 consider the data? Once more, the decision was to
favor backwards compatibility, so the string data within a BLOB field is con-
sidered to be ANSI based as in past versions of Delphi. You should use
TWideMemoField for Unicode data in a BLOB as suggested by this com-
ment in the GetAsString method of the TBlobField class:
// For backwards compatibility, read untyped data as Ansi.
// Use TWideMemoField for blobs associated with Unicode
// string data.

Marco Cantù, Delphi 2009 Handbook

344 - Chapter 11: Datasets and dbExpress

Parameters Extensions
Like fields, parameters have a few new properties, but in this case you can
not only see support for the new field types, but also for the new kinds of
parameters used for DataSnap:
type
 TParam = class(TCollectionItem)
 public
 property AsShortInt: LongInt;
 property AsByte: LongInt;
 property AsLongWord: LongWord;
 property AsLargeInt: LargeInt;
 property AsAnsiString: AnsiString;
 property AsBytes: TBytes;
 // Used by TSQLServerMethod
 property AsDataSet: TDataSet;
 property AsParams: TParams;
 property AsStream: TStream;

More on these new kinds of parameters in Chapter 12 , where I'll cover the
new DataSnap. Notice that the core implementation of these parameters,
though, adds support for an IParamImplementation interface, used to
assign objects to the Variant value of a TParam object. There are a few pre-
defined classes implementing this interface: the TParamObject class (for
generic parameters), the TParamDataSetObject class (for dataset para-
meters), the TParamParamsObject class (for parameters representing
parameters, and the TParamStreamObject class (for stream parameters).

DataSet Internals
You probably know that the TDataset class is a base abstract class provid-
ing the foundations of Delphi database access. You might not know, though,
that this class has a large number of virtual abstract methods requiring a
rather low level implementation of buffer-level management, which in the
past where all based on PChar pointers.

Needless to say, in Delphi 2009 this isn't true any more. Most low level
pointers are now declared either as PByte or TBytes (that is, array of
Byte). To clean up code and simplify it, the DB unit introduces and uses the

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 345

new TRecordBuffer type and modifies the list of buffers type (that used to
be an array of PChar):
type
 TRecordBuffer = PByte;
 TBufferList = array of TRecordBuffer;

For example, this is the definition of the record buffer management func-
tions in all versions from Delphi 3 to Delphi 2007:
 function AllocRecordBuffer: PChar; virtual;
 procedure FreeRecordBuffer(
 var Buffer: PChar); virtual;
 procedure GetBookmarkData(Buffer: PChar;
 Data: Pointer); virtual;
 function GetBookmarkFlag(
 Buffer: PChar): TBookmarkFlag; virtual;

This is the same set of TDataSet methods in Delphi 2009:
 function AllocRecordBuffer: TRecordBuffer; virtual;
 procedure FreeRecordBuffer(
 var Buffer: TRecordBuffer); virtual;
 procedure GetBookmarkData(Buffer: TRecordBuffer;
 Data: Pointer); overload; virtual;
 function GetBookmarkFlag(
 Buffer: TRecordBuffer): TBookmarkFlag; virtual;

I could list dozen of other methods with the same differences. What is
important to notice is that many of these are virtual methods, the methods
you need to implement to define a custom dataset. Methods of the public
interface of TDataSet, instead, see very limited changes. In other words,
the changes to the TDataSet class have little effect on users of dataset
classes, but significantly affect those who wrote a custom dataset class.

Porting a (Simple) Custom Dataset
For Mastering Delphi 7 I wrote143 a custom dataset based on a record-to-
stream architecture. So I thought that porting that custom dataset to Delphi
2009 would be a good test of the effort involved in such a process.

143 The original code actually dates back to my Delphi Developer Handbook, written for
Delphi 3, and was modified for the Delphi 7 book. I have no room here to cover in de-
tail what it takes to write a custom dataset, as that is far from an easy task. If you are
interested in learning about the details of how to write a custom dataset you can refer
to one of those two old books of mine.

Marco Cantù, Delphi 2009 Handbook

346 - Chapter 11: Datasets and dbExpress

Having done this porting (without going all the length to support Unicode
strings in my dataset), I have to say it was simple. The custom dataset is
divided in two source code units: the MdDsCustom unit, which defines an
abstract high level TMdCustomDataSet class, and the MdDsStream unit,
which defines the actual implementation class TMdDataSetStream.

I opened both units, did a Search/Replace of PChar to TRecordBuffer
finding 19 occurrences in the first unit and 4 in the second, and accepted
them all. Most of the references to PChar where in the signature of the vir-
tual methods that have been modified, a couple were local temporary
variables used to store the current buffer, obtained with the ActiveBuffer
method of the TDataSet class that now returns a TRecordBuffer.

At this point the component would compile. In the main program I had to
tweak the code for testing bookmarks, by declaring the local variable as:
// bm: TBookmarkStr; // old
bm: TBookmark; // new

That was it! In a matter of minutes the custom dataset was up and running,
and I could even reopen an existing demo file, with some data. The dataset
source code files and the demo program are available in the StreamDsDemo
folder. Here is the sample output:

dbExpress in Delphi 2009
Delphi 2007 saw a significant update to the dbExpress architecture, with the
release of version dbExpress IV. Delphi 2009 has some improvements, but
they can be considered as minor... if you don't keep in the picture the sup-
port for multi-tier data that has been dubbed DataSnap 2009, but is
technically part of the dbExpress architecture, as least on the client side.
DataSnap 2009 is the subject of the next chapter, so I won't cover it here.

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 347

Focusing only on client/server applications, what are the changes in dbEx-
press? Nothing astonishing, but some interesting improvements (and a
couple of problems). I'll explore the changes by working on a very simple
dbExpress program borrowed from Delphi 2007 Handbook (and originally
written for Mastering Delphi 6, I believe). The new version of the program is
called DbxMulti2009.

Connection Settings and Connection
Strings

As you create a new dbExpress application (or open an existing one), and
select the SQLConnection component editor (the shortcut menu of the com-
ponent) you'll immediately see something different from the past:

The Connection editor command (Edit Connection Properties) and the cor-
responding dialog box are gone, and so has the dialog box with the list of
installed drivers. You now have two choices for modifying the dbExpress
configuration: The first is to manually edit the dbxdrivers.ini and dbxcon-
nections.ini files or and the second is to use the SQLConnection component,
its properties, and its new component editor commands. In particular, after
you've selected a connection, you can choose from:

● Reload connection parameters will copy the dbxconnections.ini set-
ting to the SQLConnection component for the current configuration.
Notice that when the settings have been modified, compared to the
original version, the ConnectionName property in the Object
Inspector will have an asterisk after its name, indicating a modified
set of connection data:

Marco Cantù, Delphi 2009 Handbook

348 - Chapter 11: Datasets and dbExpress

● On the other hand, Save connection parameters will update the
dbxconnections.ini with the local settings for the current configura-
tion

● Add ConnectionString Param will add an extra property to the com-
ponent, with the complete configuration saved in a single string
property, something very handy for configuring the status based on
an external INI file or some other configuration settings.

● Once you've added a connection string, this command will replaced
with the commands Refresh ConnectionString Param and Remove
ConnectionString Param.

For the specific demo, adding the connection string parameter will add a
ConnectionString line to the Params property, with the following content
(which I've split on to multiple lines for readability, while it has to be in a
single line because it is part of a TStringList):
DelegateConnection=dbxpoolconnection,
DriverName=INTERBASE,
DRIVERUNIT=DBXDynalink,
DRIVERPACKAGELOADER=TDBXDynalinkDriverLoader,
DRIVERPACKAGE=DBXCommonDriver110.bpl,
DRIVERASSEMBLYLOADER=
 Borland.Data.TDBXDynalinkDriverLoader,
DRIVERASSEMBLY=Borland.Data.DbxCommonDriver,
Version=11.0.5000.0,
Culture=neutral,
PublicKeyToken=a91a7c5705831a4f,
GETDRIVERFUNC=getSQLDriverINTERBASE,
DATABASE=..\CodeGear Shared\Data\Employee.GDB,
ROLENAME=RoleName,
USER_NAME=sysdba,
PASSWORD=masterkey,
SERVERCHARSET=,
SQLDIALECT=3,
BLOBSIZE=-1,
COMMITRETAIN=False,
WAITONLOCKS=True,
ERRORRESOURCEFILE=,
LOCALECODE=0000,
INTERBASE TRANSISOLATION=ReadCommited,
TRIM CHAR=False

Notice that this one-line configuration setting includes standard database
settings (in the last part), driver configuration settings, the actual database
to connect to, and even delegate driver information.

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 349

This new approach is based on a new internal data structure, the
TConnectionData persistent class, that can be accessed using the new
ConnectionData read-only property of the SQLConnection component.
This class stores all configuration settings in an internal TBDXProperties
list, can refer to a further TConnectionData structure with a delegate con-
nection, and has support methods like:
 procedure UpdateProperties(NewProperties: TStrings);
 procedure AddProperties(NewProperties: TStrings);
 procedure ReloadProperties;
 procedure RefreshProperties;

As an example I've used this property to extract the connection string from
the ConnectionData (information also available in the connection Params
property). I've written this code in the OnExecute event handler action that
I've added to the ActionManager component of the program:
procedure TForm1.ActionGetInfoExecute(Sender: TObject);
begin
 ShowMessage (SQLConnection1.ConnectionData.
 Properties ['ConnectionString']);
end;

Setting Driver Properties and Delegate
Drivers

Another noticeable difference relates to the configuration of drivers and del-
egate drivers. As you select a value for the Driver property in Delphi 2009
at design-time, you'll be able to expand this property and set a few values.
Among them there is a reference to the delegate driver, that you can expand
as well to configure it. In other words if you need to set a trace file, for
example, you can now do so directly in the driver configuration. This is how
the Object Inspector looks like in a such a case:

Marco Cantù, Delphi 2009 Handbook

350 - Chapter 11: Datasets and dbExpress

Deployment and INI files
Delphi 2009 has an unwanted side effect related with the deployment of
dbExpress configuration files. This issue is expected to be solved in the
Delphi 2009 Update 2, still not available at the time I was writing the book.
You can probably ignore the following, if you have that update installed.

In the release version of Delphi 2009, if you configure the TSQLConnection
component setting a connection and a driver, your application will need to
read the dbxdrivers.ini and dbxconnections.ini files at runtime, which was
not the case in the past. If the files are not available you'll see an error like144:

144 The error message is a little confusing, as the file are not missing in the system re-
gistry, of course, but in the folder referenced by the system registry, which on my sys-
tem is C:\Users\Public\Documents\RAD Studio\dbExpress.

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 351

This is due to the fact that even if the various configuration settings of the
driver have been loaded in the proper connection properties (including
LibraryName, VendorLib, and GetDriverFunc) and parameters (stored
in the Params string list), the code will try to refresh them anyway. The line
that triggers the error is the following (from the SetDriverName method of
the TSQLConnection class):
DriverProperties := TDBXConnectionFactory.
 GetConnectionFactory.GetDriverProperties(FDriverName);

A workaround (until this problem is fixed in an update, which might have
already been made available by the time you are reading this) is to create
and install an in-memory connection manager145 before the property is
assigned, that is, before the form is loaded (as I've done this in the dbxMul-
ti2009 example):
procedure SetConnectionManager;
var
 ConnFact: TDBXConnectionFactory;
begin
 ConnFact := TDBXMemoryConnectionFactory.Create;
 ConnFact.Open;
 TDBXConnectionFactory.SetConnectionFactory(ConnFact);
end;

initialization
 SetConnectionManager;

Again, you won't probably need this code after applying Update 2 to Delphi
2009. As an alternative solution you can even consider deploying empty
dbxdrivers.ini and dbxconnections.ini files in the same directory as the
application.

Drivers in the Executable
Finally, to make the application work you have to add the DbxInterBase unit
to your uses clause, which contains the driver and metadata information for
the specific database.

145 The original code, and the rationale behind it, can be found on the blog of Chau Chee
Yang, at the address http://chee-yang.blogspot.com/2008/09/delphi-2009-using-
dbx4-framework.html.

Marco Cantù, Delphi 2009 Handbook

352 - Chapter 11: Datasets and dbExpress

This unit is generally added automatically as you set the Driver in the SQL-
Connection component, but I've seen situations in which this was not
managed properly, leading to the following error:

If you want to handle multiple databases at runtime, changing the configur-
ation dynamically or loading it from a configuration files, you should
manually add the proper units for the various databases to the application:
DbxOracle, DbxMSSQL, DbxMySql, DbxBlackfishSQL, DbxDb2, DbxInfor-
mix, the two Sybase drivers, and so on. In the past this driver and metadata
information was added to each project, just in case it might need it, while
now you can include only the support for the databases you are going to use
in the executable.

Notice that these units add driver and metadata access information to the
dbExpress configuration, but they don't embed the actual dbExpress
driver146 (in this case dbxint.dll), that you still have to deploy along with your
application and the vendor library.

Extended Metadata Support
A recent feature of dbExpress, even if not new to Delphi 2009, is its exten-
ded support for metadata. This feature was introduced in the December
2007 Update of Delphi 2007, but was not covered in Delphi 2007 Handbook
(which was released before that update).

The new metadata support is used extensively by the Data Explorer pane of
the Delphi IDE, but can also be used by any application. In short, you'll not
only be able to browse the database structure but also to use classes and

146 This is different than in past versions of Delphi, in which it was possible to include a
specially compiled unit containing the driver code, effectively embedding the driver
library into the executable file.

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 353

objects to modify it, rather than relying directly on the native database SQL
commands for creating and modifying data structures. Not only will the
code look more object-oriented, but it will be also easier to target different
database servers with the same code, as dbExpress abstracts the metadata
capabilities of each server.

I don't want to delve into the details of dbExpress metadata, which is actu-
ally quite complex to manage, but only show you a simple example you can
use to add new tables to a database. Before doing any operation on metadata
in dbExpress, you need to initialize a specific provider and to keep a refer-
ence to this object around (in the example in a private field of the form):
type
 TFormMetaCreateTable = class (TForm)
 private
 metaProv: TDBXDataExpressMetaDataProvider;

procedure TFormMetaCreateTable.InitMetaProvider;
begin
 if not Assigned (metaProv) then
 begin
 metaProv := TDBXDataExpressMetaDataProvider.Create;
 metaProv.Connection := SqlConnection1.DBXConnection;
 metaProv.Open;
 end;
end;

Notice that the metadata is connected with and depends on the actual con-
nection and its configuration, basically the driver you are working on. The
unit that defines the metadata provider, which you have to include in your
uses clause, is DBXDataExpressMetaDataProvider.

With this configuration available, here is the code used to create the table:
procedure TFormMetaCreateTable.btnCreateClick(
 Sender: TObject);
var
 MetaDataTable: TDBXMetaDataTable;
begin
 InitMetaProvider;

 MetaDataTable := TDBXMetaDataTable.Create;
 MetaDataTable.TableName := edTableName.Text;
 MetaDataTable.AddColumn(
 TDBXInt32Column.Create('id'));
 MetaDataTable.AddColumn(
 TDBXDecimalColumn.Create('amount', 10, 2));
 MetaDataTable.AddColumn(

Marco Cantù, Delphi 2009 Handbook

354 - Chapter 11: Datasets and dbExpress

 TDBXUnicodeCharColumn.Create('city', 32));

 metaProv.QuoteIdentifierIfNeeded('');
 metaProv.CreateTable(MetaDataTable);
 Log ('Table ' + MetaDataTable.TableName + ' created');
end;

Beside creating tables, you can add other settings, from indexes to views to
referential integrity constraints. You can use the metadata also to query the
database structure. This is the traditional code you can use in dbExpress to
access the available tables, using the GetTableNames method of the SQL-
Connection component:
procedure TFormMetaCreateTable.btnTableListOldClick(
 Sender: TObject);
var
 sl: TStringList;
 str: string;
begin
 sl := TStringList.Create;
 try
 SqlConnection1.GetTableNames(sl);
 for str in sl do
 begin
 Log (str);
 end;
 finally
 sl.Free;
 end;
end;

Using the metadata provider you can access much more than table names,
although this sample snippet does basically only that, filtering out the sys-
tem tables:
procedure TFormMetaCreateTable.btnTableListMetaClick(
 Sender: TObject);
var
 dbxTable: TDBXTablesTableStorage;
begin
 InitMetaProvider;

 dbxTable := metaProv.GetCollection (
 TDBXMetaDataCommands.GetTables)
 as TDBXTablesTableStorage;
 while dbxTable.Next do
 if not (dbxTable.TableType = 'SYSTEM TABLE') then
 Log (dbxTable.TableName);
end;

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 355

Notice the use of the TDBXMetaDataCommands class, that has a collection of
public constants used to help write the various metadata commands, which
are basically string commands. The output of the previous event handler
(after creating a new table with the default name) is displayed below:

In a very similar way the program reads the names and types of the columns
of the new table (or of the table named in the edit box):
procedure TFormMetaCreateTable.btnColumnsListClick(
 Sender: TObject);
var
 dbxTable: TDBXColumnsTableStorage;
begin
 InitMetaProvider;

 dbxTable := metaProv.GetCollection (
 TDBXMetaDataCommands.GetColumns + ' ' +
 edTableName.Text) as TDBXColumnsTableStorage;
 while dbxTable.Next do
 Log (dbxTable.ColumnName +
 ' [' + dbxTable.TypeName + ']');
end;

In this case you have to combine a command text (GetColumns) with spe-
cific information about the table you are interested in, which is quite odd. A
helper function with a parameter would probably have made more sense.

Notice that the two calls to GetCollection of the metadata provider, in the
last two code snippets, return objects of different classes that inherit from
TDBXTable (ultimately a custom TDBXValueList). In the last case the class

Marco Cantù, Delphi 2009 Handbook

356 - Chapter 11: Datasets and dbExpress

returned is TDBXColumnsTableStorage, while in the previous code snip-
pet the class was TDBXTablesTableStorage.

Data Pumping for dbExpress
When working with multiple databases it is often necessary to migrate data
from one server to another, and with table definitions not exactly identical
among different servers this operation can take time. Following approach of
the old DataPump available for the BDE, the Internet services team of Code-
Gear147 has built a dbExpress data pump application:

147 The tool was developed by Jon Benedicto, Yorai Aminov, and John Kaster, who's the
head of the Internet services team at CodeGear. John Kaster is well known to the
Delphi community, as he was involved with the product and the MIDAS technology,
among other things. John's blog is at: http://blogs.codegear.com/johnk.

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 357

This program uses dbExpress metadata extensively to migrate definitions
and actual data between servers for which there is a dbExpress driver with
metadata support. The application is not part of Delphi, because it was pro-
duced by a different group within CodeGear, but is available among the
Delphi 2009 database examples. In my installation, the project is under:
C:\Users\Public\Documents\
 RAD Studio\6.0\Demos\database\projects\dbxdatapump\

Using the tool is relatively simple, but what's great is having the entire
source code at your disposal.

Data-Aware Controls
At first look, considering the data-aware controls of the VCL you might see
very little change. In effect, it is true that they have limited new features, if
you don't consider the fact that all data-aware controls are now Unicode
enabled.

We also saw in the last chapter how to create a database navigator based on
the Ribbon control. Still, it would be nice to have some of the features that
were added to other controls of the VCL. For example, the TDBEdit class
inherits from TCustomEdit, but it doesn't expose properties like
NumbersOnly or TextHint. Would it be hard to make those extra features
available, even without inheriting a custom component from the TDBEdit
class? We can do so either by using the protected hack, or (the solution I
prefer) with a local interposer class. This is the class I've added to the main
form of the DbEditPlus example, to make the two extra properties available:
type
 TDbEdit = class (DBCtrls.TDBEdit)
 public
 property NumbersOnly;
 property TextHint;
 end;

The program has a simple form with a number of edit boxes (obtained auto-
matically by dragging the fields from the fields editor). Now the first of these
edits is connected to a numeric database field, which limits its input to num-
bers, decimal separators, exponential values, and a few more I'd like to

Marco Cantù, Delphi 2009 Handbook

358 - Chapter 11: Datasets and dbExpress

remove. We can do that easily (and even have the specific Windows error
message) by writing in the OnCreate event handler of the form:
procedure TFormDbEditPlus.FormCreate(Sender: TObject);
begin
 ClientDataSet1.Open;
 DbEdit1.NumbersOnly := True;
end;

Managing the TextHint is not that easy, because if all you do is set that
property you have to move the focus manually to the given edit box to make
it start work. There might be a better way, but I resorted to simulating that
behavior in code. As setting the focus won't work until the form is created
and visible, I've decided to execute the code when a specific button is
pressed, but it wouldn't be difficult to automate:
procedure TFormDbEditPlus.btnTextHintClick(
 Sender: TObject);
var
 aControl: TWinControl;
begin
 aControl := ActiveControl;
 DbEdit4.TextHint := 'Enter second address line';
 DbEdit4.SetFocus;
 aControl.SetFocus;
end;

The combined effect of the features of this demo (error while entering a let-
ter and text hint when a field is empty) is visible in this screen shot:

Marco Cantù, Delphi 2009 Handbook

Chapter 11: Datasets and dbExpress - 359

From DBImage to Poor Old DBGrid
A specific new feature of the DBImage control is its new Proportional
property. What is also relevant is that the DBImage control inherits the abil-
ity to handle new file formats, like PNG, from the Image control.

Despite rumors, the DBGrid control hasn't been revamped in Delphi 2009
and remains quite an old control with limited capabilities. What CodeGear
has done, instead, is to make one of the third party grid controls available to
registered users of Delphi 2009148, the InfoPower Grid Essentials, by Woll2-
Woll Software. This special edition of the control (with limited features
compared to the full InfoPower control set) is not part of the Delphi installa-
tion but has to be downloaded separately from the Delphi registered users
download page, at:
http://cc.codegear.com/reg/delphi

This is possible only if you bought and registered Delphi 2009, of course.
Refer to the Woll2Woll web site, for more information about this extended
database grid and their other offerings, at:
http://www.woll2woll.com

What's Next
This chapter focused on new features of Delphi database architecture a sig-
nificant part of the VCL, both in terms of size and importance. I've detailed
how the Unicode support has been modified and covered some new features
of the dbExpress architecture.

The most important change to the Delphi database architecture, though, is
in its revamped multi-tier support, called DataSnap and originally intro-
duced in Delphi 5 with the name MIDAS. The new architecture resembles
the original one, and uses some of those components, but is not tied to COM
any more, uses a different transport layer, and opens up interesting possibil-
ities. That's why there is an entire chapter devoted to DataSnap 2009.

148 At least for some time, it is not clear if the offer will last indefinitely.

Marco Cantù, Delphi 2009 Handbook

360 - Chapter 11: Datasets and dbExpress

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 361

Chapter 12:
DataSnap 2009

For a long time Delphi has included a technology for building multi-tier
database applications. Formerly known as MIDAS and later as DataSnap,
Delphi's multi-tier technology was based on COM, even if the remote con-
nectivity could be provided by sockets and HTTP, instead of DCOM. For
some time, it even supported CORBA. A slightly modified version, provided
SOAP connectivity.

Delphi 2009 still includes the classic DataSnap, but provides a brand new
remoting and multi-tier technology as well. It is partially based on the dbEx-
press architecture. This new technology is still called DataSnap, but to avoid
confusion is generally referenced as “DataSnap 2009”.

Marco Cantù, Delphi 2009 Handbook

362 - Chapter 12: DataSnap 2009

Building a First DataSnap 2009
Demo

Before I get into too many details, let me start with a simple three-tier data-
base-oriented demo. This will help clarify a few points and also cover
differences from the previous version of the technology.

Building a Server
The first step is building a DataSnap 2009 server application. This can be a
standard VCL application, to which you add a server module (found in the
Delphi files page of the New Items dialog box).

To the server module (but we could also have used a standard data module)
you generally add the dbExpress components to connect to the data base
server, plus a dataset provider to expose the given datasets:
object IBCONNECTION: TSQLConnection
 ConnectionName = 'IBCONNECTION'
 DriverName = 'Interbase'
 LoginPrompt = False
 Params.Strings = (
 'DriverName=Interbase'
 'Database=C:\Program Files\...\Data\Employee.GDB')
end
object EMPLOYEE: TSQLDataSet
 CommandText = 'EMPLOYEE'
 CommandType = ctTable
 SQLConnection = IBCONNECTION
end
object DataSetProviderEmployee: TDataSetProvider
 DataSet = EMPLOYEE
end

This server module is built in a very similar way to how it would have been
in the past. What is new is the need to include in the program three new
components that provide configuration and connectivity in place of the
COM support (which is totally gone). The three components are:

● DSServer, the main server configuration component, which is
needed to wire all the other DataSnap 2009 components together.

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 363

● DSServerClass, a component needed for each class you want to
expose. This component is not the class you make available, but acts
as a class factory to create objects of the class you want to call from a
remote client. In other words, the DSServerClass component will
refer to the class that has the public interface.

● DSTCPServerTransport, a component that defines the transport
protocol to be used (this is the only protocol directly available in
Delphi 2009) and its configuration, such as which TCP/IP port to
use.

In the demo these components are in the main form of the server, con-
figured as follows:
object DSServer1: TDSServer
 AutoStart = True
 HideDSAdmin = False
 OnConnect = DSServer1Connect
 OnDisconnect = DSServer1Disconnect
end
object DSTCPServerTransport1: TDSTCPServerTransport
 PoolSize = 0
 Server = DSServer1
 BufferKBSize = 32
end
object DSServerClass1: TDSServerClass
 OnGetClass = DSServerClass1GetClass
 Server = DSServer1
 LifeCycle = 'Session'
end

We'll get to some of the details of these properties later on. The reason you
don't see the value of the TCP/IP port in the listing above is that I've not
modified the default value of 211.

The only Delphi code you need to write is the “class factory” code that is
needed to connect the DSServerClass1 component to the server module
exposing the providers:
procedure TFormFirst3Tier2009Server.
 DSServerClass1GetClass(DSServerClass: TDSServerClass;
 var PersistentClass: TPersistentClass);
begin
 PersistentClass := TDSFirst3TierServerModule;
end;

Marco Cantù, Delphi 2009 Handbook

364 - Chapter 12: DataSnap 2009

This is all you need for the server. In the actual example I've added a logging
statement to the method above, as well as to the event handlers of the
OnConnect and OnDisconnect events of the DSServer component.

Again, there is no need to register it in any way. Simply run it, maybe using
the Run | Run Without Debugging command of the Delphi IDE, so you can
build the client and connect it to the server even at design time.

The First Client
Now that we have a server available, we can move on and build a first client.
In the DataSnap 2009 client application we need to use an SQLConnection
component associated with the new DataSnap dbExpress driver, configured
with the proper TCP/IP port.

Next we need a DSProviderConnection component, used to refer to the
server class, with the ServerClassName property. This is not the interme-
diary class factory in the server (DSServerClass1), but the actual target of
the class factory, in my example the TDSFirst3TierServerModule class.

Like in a traditional DataSnap application, the provider can be used by the
ClientDataSet component to fetch (and update) the remote dataset. First,
you have to assign the RemoteServer property of the ClientDataSet, picking
the DSProviderConnection1 component from the drop down list. Next,
you can select the DataSetProviderEmployee provider from the drop
down of the ProviderName property, populated with all exported DataSet-
Provider components of the remote data module.

This is a summary of the properties of these components, plus a DataSource
used to display the database table in a DBGrid:
object SQLConnection1: TSQLConnection
 DriverName = 'Datasnap'
end
object DSProviderConnection1: TDSProviderConnection
 ServerClassName = 'TDSFirst3TierServerModule'
 SQLConnection = SQLConnection1
end
object ClientDataSet1: TClientDataSet
 ProviderName = 'DataSetProviderEmployee'
 RemoteServer = DSProviderConnection1
end
object DataSource1: TDataSource
 DataSet = ClientDataSet1

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 365

end

That's all it takes for an introductory demo. Now if you run the server first
and the client next, you can press the Open button of the client and see the
database data. Also notice the log produced by the server, like in the next
screen shot of the combined programs:

From DataSnap to DataSnap 2009
Compared to traditional DataSnap application, there are a few significant
differences, more related to the architecture and deployment than the actual
code you have to write:

● There is no COM involved for the development of the server. Even if
a client could already use sockets in the past, a socket-to-Com map-
ping service was required on the server. Now the client and server
applications communicate directly over TCP/IP.

● As a side effect, you don't have to register the server, nor run any
helper service on it. All the server has to provide to the client is an
open TCP/IP port the client can reach

● You must manually run the application on the server, or create a ser-
vice for it. In the past the COM support implied the server
application would be started as needed.

Marco Cantù, Delphi 2009 Handbook

366 - Chapter 12: DataSnap 2009

● The server implementation is slightly more complicated in terms of
components, but there is very little code behind the scenes, as for
the COM counterpart.

● The client implementation is almost identical, as we need a standard
SQLConnection component, in place of a specific connection object.

● On the server side, the TDSServerModule class inherits from
TDataModule, including the IAppServer interface (the same inter-
face used in the past by a COM-based TRemoteDataModule) and
enabling the $MethodInfo compiler directive.

● As the client-side dbExpress driver is a pure 100% Delphi driver, you
don't need do deploy any DLL on the client computer, even if you
are using dbExpress for the connectivity.

● Pay a lot of attention when closing the server application. Unlike in
the COM architecture, which warns you about pending connections,
a DataSnap 2009 server will seem to close, but won't until there are
no remaining connections to it. However, even after the connections
have been closed it will remain running in memory, even if the main
form is gone. You'll need to use Task Manager (or Process Explorer)
to terminate the server. You might think that closing all existing cli-
ent applications will be enough, but it is not: The Delphi IDE, in fact,
can open a connection to the server even automatically, for browsing
its exposed classes and methods. Be sure to close any SQLConnec-
tion to the server before stopping it.

Adding Server Methods
As in the past, you can write methods in the server that can be called by the
client. In the past, this was based on COM, so you had to add interfaces to
the type library and implement then in the server objects, and call the meth-
ods using COM dispatch interfaces on the client. In DataSnap 2009 the
remote methods calls, or server method calls, are based on Delphi's RTTI.
Notice, however, that parameters passing is based on dbExpress parameter
types, and not on Delphi language types.

You can have multiple server side classes that expose methods, but to con-
tinue with the simple project I've already built, I added an extra method to
the server module class (in the server application), using the following code:

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 367

type
 TDSFirst3TierServerModule = class(TDSServerModule)
 IBCONNECTION: TSQLConnection;
 EMPLOYEE: TSQLDataSet;
 DataSetProviderEmployee: TDataSetProvider;
 private
 { Private declarations }
 public
 function GetHello: string;
 end;

function TDSFirst3TierServerModule.GetHello: string;
begin
 Result := 'Hello from TDSFirst3TierServerModule at '
 + TimeToStr (Now);
end;

To enable remote invocation you have to connect the class for which you
want to expose methods to a DSServerClass factory. (In this case, we've
already done so in the database portion of the demo). The second require-
ment is to use a class that is compiled with the $MethodInfo directive
turned on, but this already takes place in the declaration of the base
TDSServerModule class. This means that, in practice, all we have to do is to
add a public method to the server module, and everything else will work.

How do we call this server method from the client application? There are
basically two alternatives. One is to use the new SqlServerMethod compon-
ent and call the server method as if it was a stored procedure. The second is
to generate a proxy class in the client application and use this proxy class to
make the call.

In the First3Tier2009 client demo I've implemented both approaches. For
the first, I've added an SqlServerMethod149 component to the form of the cli-
ent, tied it to the connection, picked a value for the ServerMethodName
property in the Object Inspector (among the many available, as the standard
IAppServer interface methods are listed as well), and checked the value of
the Params property. This is a copy of the component settings (which actu-
ally include the result of a sample call performed when checking the
parameters):
object SqlServerMethod1: TSqlServerMethod
 GetMetadata = False

149 Oddly enough the SqlServerMethod component is named with a mixed case “Sql”,
while all other dbExpress components use uppercase “SQL”. Not a big deal, but I
though it was worth noticing.

Marco Cantù, Delphi 2009 Handbook

368 - Chapter 12: DataSnap 2009

 Params = <
 item
 DataType = ftWideString
 Precision = 2000
 Name = 'ReturnParameter'
 ParamType = ptResult
 Size = 2000
 Value = 'Hello from TDSFirst3TierServerModule...'
 end>
 SQLConnection = SQLConnection1
 ServerMethodName = 'TDSFirst3TierServerModule.GetHello'
end

Notice that the native string type is mapped to a string parameter of 2,000
characters. After configuring the SqlServerMethod component, the program
can call it using the input parameters (none in this case) and the output
parameters (the result) as in a stored procedure or query call:
procedure TFormFirst3Tier2009Client.btnHelloClick(
 Sender: TObject);
begin
 SqlServerMethod1.ExecuteMethod;
 ShowMessage (SqlServerMethod1.Params[0].Value);
end;

To make it easier to write the calling code we can use the second approach I
mentioned earlier, creating a local proxy class in the client application. To
accomplish this, we can ask the Delphi IDE to parse the interface of the
server class and create local proxy class for it, by clicking on the SQLCon-
nection component and selecting the command Generate Datasnap client
classes. In the case of this example, Delphi will generate a unit with the fol-
lowing class (from which I've omitted the code of the constructors and the
destructor):
type
 TDSFirst3TierServerModuleClient = class
 private
 FDBXConnection: TDBXConnection;
 FInstanceOwner: Boolean;
 FGetHelloCommand: TDBXCommand;
 public
 constructor Create(
 ADBXConnection: TDBXConnection); overload;
 constructor Create(
 ADBXConnection: TDBXConnection;
 AInstanceOwner: Boolean); overload;
 destructor Destroy; override;
 function GetHello: string;
 end;

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 369

function TDSFirst3TierServerModuleClient.GetHello: string;
begin
 if FGetHelloCommand = nil then
 begin
 FGetHelloCommand := FDBXConnection.CreateCommand;
 FGetHelloCommand.CommandType :=
 TDBXCommandTypes.DSServerMethod;
 FGetHelloCommand.Text :=
 'TDSFirst3TierServerModule.GetHello';
 FGetHelloCommand.Prepare;
 end;
 FGetHelloCommand.ExecuteUpdate;
 Result := FGetHelloCommand.Parameters[0].
 Value.GetWideString;
end;

Notice that the generated code doesn't use the high level SqlServerMethod
component, but rather calls directly into the low-level dbExpress imple-
mentation objects, like the TDBXCommand class150.

Having this proxy class available, the client program can now call the server
method in a more language-friendly way, although we do need to create an
instance of the proxy class (or create one and keep it around). This code
does exactly the same as the previous code based on the SqlServerMethod
component:
procedure TFormFirst3Tier2009Client.btnHelloClick(
 Sender: TObject);
begin
 with TDSFirst3TierServerModuleClient.Create(
 SQLConnection1.DBXConnection) do
 try
 ShowMessage (GetHello);
 finally
 Free;
 end;
end;

If the code is actually longer than the previous version, this is because the
method we are calling has no parameters, thus making the language binding
code less relevant. Still, having a ready-to-use proxy object, we could have
written:
 ShowMessage (ServerProxyObject.GetHello);

150 There is a demo of the low-level dbExpress classes in the section “Using the DBX-
Common classes” of Chapter 10 of my Delphi 2007 Handbook.

Marco Cantù, Delphi 2009 Handbook

370 - Chapter 12: DataSnap 2009

Sessions and Threading with a
Non-Database DataSnap Server

If using the IAppServer interface directly is going to be the most common
way for using DataSnap 2009, it is not only possible to use this multi-tier
technology for remote method invocation outside of the database context.
You can also use the same technology to access database data or perform
database operations without using the IAppServer interface, which is fine
if all you want to do is read data from the server. If you want to let the client
application modify the data and post it back to the server, using custom
methods could become tedious compared to the ready-to-use IAppServer
interface, implemented by the ClientDataSet and the DataSetProvider com-
ponents.

In any case, in this second example, I want to create a minimal server expos-
ing a couple of simple classes. In the following sections I'll use this simple
server to explore a couple of relevant issues, like server memory manage-
ment and server (and client) threading.

The first server class (with two methods) I want to publish in the Dsnap-
MethodServer project is the following:
{$MethodInfo ON}
type
 TSimpleServerClass = class(TPersistent)
 public
 function Echo (const Text: string): string;
 function SlowPrime (MaxValue: Integer): Integer;
 end;
{$MethodInfo OFF}

The code of the first method simply echoes the input, repeating its last part,
while the second method performs the most classic slow computation of my
books (already used in the ParallelFor example of Chapter 6, among others).
This is the code of the two methods:
function TSimpleServerClass.Echo(
 const Text: string): string;
begin
 Result := Text + '...' +
 Copy (Text, 2, maxint) + '...' +
 Copy (Text, Length (Text) - 1, 2);
end;

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 371

function TSimpleServerClass.SlowPrime(
 MaxValue: Integer): Integer;
var
 I: Integer;
begin
 // counts the prime numbers below the given value
 Result := 0;
 for I := 1 to MaxValue do
 begin
 if IsPrime (I) then
 Inc (Result);
 end;
end;

I'll use the latter method to discuss some threading issues in practice. I've
omitted the extra statements used to log the server operations from the code
snippet above.

The server application has only one unit, which defines the main form and
two server side classes. The form has the usual DataSnap server compon-
ents, a DSServer and a DSTCPServerTransport, plus two DSServerClass
component, one for each of the classes I want to expose. After compiling the
server and starting it, I've let Delphi create a client proxy using the SQLCon-
nection component of a new client application. This is the client proxy class:
type
 TSimpleServerClassClient = class
 private
 FDBXConnection: TDBXConnection;
 FInstanceOwner: Boolean;
 FEchoCommand: TDBXCommand;
 FSlowPrimeCommand: TDBXCommand;
 public
 constructor Create(
 ADBXConnection: TDBXConnection); overload;
 constructor Create(
 ADBXConnection: TDBXConnection;
 AInstanceOwner: Boolean); overload;
 destructor Destroy; override;
 function Echo(Text: string): string;
 function SlowPrime(MaxValue: Integer): Integer;
 end;

In the client program, the OnClick event of the button calls the Echo server
method, after creating an instance of the proxy, if needed:
procedure TFormDsnapMethodsClient.btnEchoClick(
 Sender: TObject);
begin

Marco Cantù, Delphi 2009 Handbook

372 - Chapter 12: DataSnap 2009

 if not Assigned (SimpleServer) then
 SimpleServer := TSimpleServerClassClient.Create (
 SQLConnection1.DBXConnection);
 Edit1.Text := SimpleServer.Echo(Edit1.Text);
end;

In the example, pressing this button the sample text “Marco” is transformed
by the server call into “Marco...arco...co”. This is a complete example of how
you can create a totally custom server, with no database access involved and
no use of the IAppServer interface. This is not the only method invocation
technique available in Delphi, as you can use SOAP, socket-based applica-
tions, or third-party tools... but having this extra feature on top of the
remote database access capability is certainly a plus.

One of the reasons I'm focusing on this example is it can help us clarifying
some relevant features of DataSnap 2009. One of them is how server side
objects relate to client proxies or server method invocation. This is better
demonstrated by a server object that keeps track of its own state, like the fol-
lowing second server class of the demo project:
{$MethodInfo ON}
type
 TStorageServerClass = class(TPersistent)
 private
 FValue: Integer;
 public
 procedure SetValue(const Value: Integer);
 function GetValue: Integer;
 function ToString: string; override;
 published
 property Value: Integer read GetValue write SetValue;
 end;
{$MethodInfo OFF}

While the getter and setter methods simply read and write the local field,
the ToString function returns both the value and an object identifier based
on its hash code:
function TStorageServerClass.ToString: string;
begin
 Result := 'Value: ' + IntToStr (Value) +
 ' - Object: ' + IntToHex (GetHashCode, 4);
end;

I'll use this method to figure out how the life cycle of server objects work. In
this class the property definition only makes sense for the server as it is not
exposed to the client. The interface of the corresponding proxy becomes
(after removing private fields, standard constructors and destructor):

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 373

type
 TStorageServerClassClient = class
 public
 procedure SetValue(Value: Integer);
 function GetValue: Integer;
 function ToString: string;

Notice that compiling this class produces the following warning, unless you
manually mark the method as override:
Method 'ToString' hides virtual method of base type
'TObject'

The goal of this example is to figure out what happens when multiple client
applications use the same server. The behavior of a DataSnap 2009 server in
such a case depends on the value of the LifeCycle string property of the
DSServerClass component being used.

Server Objects Life Cycle
The life cycle of DataSnap 2009 server objects depends on the correspond-
ing setting of the related DSServerClass component. The LifeCycle
property of this component can assume the following three string values151

(which are read from the DSServerClass components when the DSServer
object is opened, ignoring any change at runtime):

● Session indicates that the server will create a different object for
each client socket connection, that is, a server object for each client.
The server objects are released when the connection is closed. Mul-
tiple clients will have independent status and separate database
access in case of the server object is a data module, maybe with its
own database connection component. This is the default setting.

● Invocation indicates that a new server object is created (and des-
troyed) every time the server method is invoked. This is a classic
stateless behavior, making the server extremely scalable, but also
subject to fetching the same data over and over.

● Server indicates a shared server object, a singleton. Each client will
use the same server object instance, the same data, potentially caus-
ing synchronization problems (as different client invocations are

151 The three string values for this property are the three constants of the
TDSLifeCycle class, defined in the DSNames unit.

Marco Cantù, Delphi 2009 Handbook

374 - Chapter 12: DataSnap 2009

performed by different server threads). Access to shared server
objects must be protected by synchronization techniques (for
example using the new TMonitor record).

Beside using these default settings, you can customize the creation and
destruction of server side objects using the OnCreateInstance and
OnDestroyInstance events of the DSServerClass component. This could
be used, for example, to implement server side object pooling.

A Client Starting the Server and Opening
Multiple Connections

As a practical example, the DsnapMethods project let's you create multiple
client connections from a single instance of a client application (using mul-
tiple instances will yield the same result), by creating multiple instances of
the form that has the SQLConnection component and stored a local instance
of the client proxy, created the first time it is used. Not only can the client
create multiple client connections, but it can also start the server program
with a given life cycle setting. This is easy to achieve because the client and
the server application are on the same computer.

To accomplish this I've added to the unit of the main form of the server a
global variable, used to determine the DSServerClass LifeCycle property:
var
 ParamLifeCycle: string;

procedure TFormDsnapMethodsServer.DSServerClass2GetClass(
 DSServerClass: TDSServerClass;
 var PersistentClass: TPersistentClass);
begin
 DSServerClass2.LifeCycle := ParamLifeCycle;
 Log ('LifeCycle: ' + DSServerClass2.LifeCycle);
 PersistentClass := TStorageServerClass;
end;

The value of the ParamLifeCycle global variable is initialized using the
command line parameters of the server application, which has the following
code at the beginning of its project file source code:
begin
 if ParamCount > 0 then
 ParamLifeCycle := ParamStr(1);
 Application.Initialize;

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 375

With this code available on the server, the main form of the client applica-
tion (which has no connection, as the connection is configured in the
secondary forms) has a RadioGroup with the following values:
object rgLifeCycle: TRadioGroup
 ItemIndex = 0
 Items.Strings = (
 'Session'
 'Invocation'
 'Server')
end

When clicking on a button, the client program reads the current value and
passes it as parameter to the server152 (notice you cannot run the server
twice, as you cannot have the same listening socket at the same port opened
by two applications at the same time on a computer):
procedure TFormDsmcMain.btnStartServerClick(
 Sender: TObject);
var
 aStr: AnsiString;
begin
 Log (rgLifeCycle.Items[rgLifeCycle.ItemIndex]);
 aStr := 'DsnapMethodsServer.exe ' +
 rgLifeCycle.Items[rgLifeCycle.ItemIndex];
 WinExec (PAnsiChar (aStr), CmdShow);
end;

Now the main form of the client application also has a button used to create
instances of the secondary form, which are destroyed when they are closed
(in their OnClose event handler), closing the specific connection to the
server. Another button is used to log the status of the current client forms:
procedure TFormDsmcMain.btnUpdateStatusClick(
 Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to Screen.FormCount - 1 do
 if Screen.Forms[I].ClassType = TFormDsmcClient then
 Log (IntToStr (I) + ': ' +
 Screen.Forms[I].ToString);
end;

152 Remember that the WinExec API uses a PAnsiChar parameter and has no wide
version, as module names in Windows are not Unicode enabled, like function names
exposed by DLLs and referenced by the GetProcAddress API.

Marco Cantù, Delphi 2009 Handbook

376 - Chapter 12: DataSnap 2009

When calling ToString for one of the secondary forms, this returns the
status of the connected server object, calling its public ToString method:
function TFormDsmcClient.ToString: string;
begin
 InitStorageServer;
 Result := StorageServer.ToString;
end;

As a first execution example, I've created the server with the default Session
life cycle, opened two client forms, set the values to 3 and 4, and asked for
the overall status, with this result:
Session
1: Value: 3 - Object: 1C38400
2: Value: 4 - Object: 1C384E0

In a second execution, I've gone for the the Invocation life cycle, and asking
for the overall status twice I saw the following output:
Invocation
1: Value: 0 - Object: 1D185B0
2: Value: 0 - Object: 1D18490
1: Value: 0 - Object: 1D185C0
2: Value: 0 - Object: 1D185D0

Notice that you are getting a new object for each execution, and the objects
status is always zero (an any setting will immediately be lost when the object
is destroyed immediately after each invocation). Needless to say, this makes
sense only for stateless operations.

Finally, I've repeated the same steps (setting values to 3 and 4) with the
Server life cycle setting, and this time every client form uses the same server
object, with the last value set:
Server
1: Value: 4 - Object: 1E08490
2: Value: 4 - Object: 1E08490

In other words, the practice shows... that the theory is correct! While explor-
ing life cycle configuration in the demo, we've also looked at an example of a
client starting the (local) server it needs and of a client with multiple con-
current connections to the server.

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 377

Memory Management
The management of server side objects in memory is tied to the client con-
nections and the server objects life cycle setting. Server side objects are
generally kept in memory until the connection is closed (Session) or until
the server is closed (Server), regardless of any active connection.

The situation is different for the Invocation life cycle, as in this case the
server side object (TStorageServerClass in the example) is created at
every invocation and should be immediately destroyed. What happens,
however, is that (in Delphi 2009 with the Update 1 installed) for every
invocation of a server method there is a leak of the server side object. For
example, using the Invocation life cycle in the program, creating a client
connection, and calling a server method twice, produces the following error
when the server is closed:

To fix the problem you can manually free the server side object by handling
the OnDestroyInstance event of the related DSServerClass component
(which receives a single parameter, with a very long name and class name,
with the server class information and the server class instance attached):
procedure TFormDsnapMethodsServer.DSSC2DestroyInstance(
 DSDestroyInstanceEventObject:
 TDSDestroyInstanceEventObject);
begin
 // only if LifeCycle = 'Invocation'?
 DSDestroyInstanceEventObject.ServerClassInstance.Free;
end;

Marco Cantù, Delphi 2009 Handbook

378 - Chapter 12: DataSnap 2009

Thread Management
Another related issue is the management of threads on the server (and in
some cases in the client). The thread manager is the TCP/IP transport com-
ponent, which can use thread pooling to improve call efficiency. You can
configure server thread pooling by using the PoolSize property of the
server transport component (and set a thread limit using the MaxThreads
property).

According to the documentation (in the source code, not in the help file) the
value of the PoolSize property should be 10 by default, but it looks like this
remains set to zero by default, thus disabling thread pooling. Set it at a value
you like, but not 10, as this would be reset due to an apparent error in the
component definition153.

The threads on the server are created on a per-connection basis, not a per-
request basis, and kept around while the connections are open. This means
that the thread pooling model and configuration need to be adapted to the
server life cycle configuration. Notice also that a client should not make two
concurrent calls using the same connection, as this can mess up with the
server side thread154.

As the server is a multi-threaded application, every time a server object ref-
erenced a global resource (like the server form used for logging, in some of
my examples) it should use a monitor or critical section. The new TMonitor
record of Delphi 2009, covered in Chapter 7, should help providing a light-
weight and simple to use synchronization mechanism.

As an example of how the threading model works, in the DsnapMethods
application I added a very slow operation. We can now try to figure out what
is its effect. The slow operation is tuned by passing to the SlowPrime server
method call a different number, in the demo extracted from a corresponding
UpDown control.

153 The PoolSize property, in fact, has a declared default value of 10, but as this is not
set in the constructor, the effect is that a value of 10 won't be saved in the DFM file
and will get lost.

154 Well, the fact that client cannot make multiple concurrent calls using a single connec-
tion is the theory, as reported by the limited documentation available. In practice, if
you try to call the server using threads, and making a second request before the first
is done, the server will queue the requests, at least when using the Session life cycle.
We'll see this in an example later in this section.

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 379

Activating two client connections (in two separate client applications), mak-
ing them slow (by using a large value like 100,000), and calling then rapidly,
you'll see the following log on the server:
Client connected
Client connected
Starting SlowPrime for 1BA8490
Starting SlowPrime for 1BA84E0
Done SlowPrime for 1BA84E0
Done SlowPrime for 1BA8490

The methods on the server are effectively executed in parallel threads, and it
might happen (as in the log above) that the second thread started ends
before the first. Notice that things could be dangerous in case of a server
object with shared state among connections, and even the unprotected log-
ging I'm using in the project could cause harm.

If you try out this application, you'll immediately notice that while it is wait-
ing for the server to respond the client application is blocked, not
responding to user requests. In this case the culprit is the time required by
the server to do the requested processing, but it might as well be a very large
data packet to return or a terribly slow network connection.

Unless you have everything under strict control (a fast local network, a
server performing relatively short operations, the ClientDataSet asking for a
limited number of records in each packet...), it might be the case of adding
some extra support on the client side to make the application more respons-
ive. Lacking an option to generate a thread-based client proxy, for the
DsnapMethodsClient project I've created a thread manually. The thread
class of the project needs references to the client proxy, the value of the
parameter, and the form where to display the output:
type
 TPrimesClientThread = class (TThread)
 private
 FMaxValue: Integer;
 FSimpleServer: TSimpleServerClassClient;
 FCallingForm: TFormDsmcClient;
 protected
 procedure Execute; override;
 public
 constructor Create (MaxValue: Integer;
 SimpleServer: TSimpleServerClassClient;
 CallingForm: TFormDsmcClient);
 end;

Marco Cantù, Delphi 2009 Handbook

380 - Chapter 12: DataSnap 2009

While the constructor simply stores its parameter, the Execute method
does the actual work (using an anonymous method):
procedure TPrimesClientThread.Execute;
var
 nResult: Integer;
begin
 nResult := FSimpleServer.SlowPrime(FMaxValue);
 Synchronize (procedure ()
 begin
 FCallingForm.lblPrimesTh.Caption :=
 IntToStr (nResult);
 // FCallingForm.btnPrimesTh.Enabled := True;
 end);
end;

This is invoked by a new button added to the client form:
procedure TFormDsmcClient.btnPrimesThClick(
 Sender: TObject);
begin
 // btnPrimesTh.Enabled := False;
 if not Assigned (SimpleServer) then
 SimpleServer := TSimpleServerClassClient.Create (
 SQLConnection1.DBXConnection);
 TPrimesClientThread.Create(
 SpinEdit2.Value, SimpleServer, self);
end;

The two commented lines in the two code snippets above (used to disable
and enable the button) can be used to avoid concurrent calls from the same
client connection (as you can now create two client side forms and call the
slow operation in each of them), but as I mentioned in an earlier note even if
you leave them commented and try executing a request before the previous
one terminated, they'll be queued on the server, as the server log demon-
strates. However, I did notice that when queuing requests it is very likely
there will be server side memory leaks, so I'm not really recommending to
stretch DataSnap server with this approach, but rather try to avoid making
multiple simultaneous requests on a connection from a multi-threaded cli-
ent.

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 381

Porting an Old DataSnap Demo
Having explored some of the alternatives in using DataSnap 2009, let me
get back to the most classic usage scenario, that is multi-tier database
applications. As we've already seen the steps for creating a brand new Data-
Snap database application, let now focus on a equally relevant issue: porting
an existing DataSnap (or MIDAS) application to this new architecture.

As a practical example, I've decided to port the ThinPlus155 application of
Mastering Delphi 2005, which showcases a few capabilities of DataSnap,
and will let me cover a more complete example, besides focusing on what
needs to be done to port a COM server invoked from a client using a socket
to a pure socket-based architecture. The new example (with server and cli-
ent projects) is in the ThinPlus2009 folder.

Notice that porting DataSnap applications to the new architecture is an
interesting option, but not a compulsory one. Traditional DataSnap servers
and clients can still compile and work properly in Delphi 2009.

Porting the Server
For porting the server project, I followed these steps:

● I removed the initialization section of the remote data module unit,
called AppsRDM. The code removed was the call to the constructor
of the TComponentFactory class.

● I also removed the UpdateRegistry class method of the
TAppServerPlus class from the same remote data module unit.

● At that point I could eliminate from the uses clause of the remote
data module the COM and ActiveX related units: ComServ, ComObj,
VCLCom, and StdVcl.

155 The program is described in detail in the book Mastering Delphi 2005, but also in
previous editions like Mastering Delphi 7. Here I'll provide only an overview of some
of its features. Those books can certainly give you a broader picture of the original
features of DataSnap (and previously MIDAS), which are mostly still available in the
Delphi 2009 version.

Marco Cantù, Delphi 2009 Handbook

382 - Chapter 12: DataSnap 2009

● Next I had to remove the reference to the custom IAppServerPlus
interface that was used by the project to provide custom server
methods (the interface was defined in the project type library).

● I deleted the type library and RIDL file (just created when the pro-
ject was opened in Delphi 2009) from the project and the disk. I also
had to remove a uses statement referring to the type library unit.

● I moved the only server method (Login) from the protected section
to the public section of the remote data module class, removing from
it the safecall modifier. As the TRemoteDataModule class is
already compiled with $MethodInfo turned on, there is no need to
add this declaration to the project unit.

● Finally, I added to the main form of the program the usual trio of
components (server, server class, and server transport), wired them
together, and returned the TAppServerPlus in the OnGetClass
event handler of the server class component .

That was all it took to upgrade an old DataSnap server to the Delphi 2009
version. It might seem a lot, but it was actually quite fast. Now it was time to
look into the client application, one that does a few custom operations.

Upgrading the Client
Porting the client application to DataSnap 2009 is generally easier than
porting the server. The core step is to remove the connection components
(my demo had three, as it let users experiment with the various connectivity
options) and replace it with an SQLConnection and a DSProviderConnec-
tion, and make the ClientDataSet component refer to this new remote
connection component.

The only specific code I had to change was the call to the Login server
method. This took place in the OnAfterConnection of the connection com-
ponent, and I've now moved it to the corresponding event of the
SQLConnection component:
procedure TClientForm.SQLConnection1AfterConnect(
 Sender: TObject);
begin
 // was: ConnectionBroker1.AppServer.
 // Login (Edit2.Text, Edit3.Text);
 SqlServerMethod1.ParamByName('Name').AsString :=

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 383

 Edit2.Text;
 SqlServerMethod1.ParamByName('Password').AsString :=
 Edit3.Text;
 SqlServerMethod1.ExecuteMethod;
end;

What this call does is to pass client login information to the server. The
server validates the information and, only if it succeeds, it will let the pro-
vider expose its data. The password check is trivial, but the approach could
be interesting. This is the Login method on the server:
procedure TAppServerPlus.Login(
 const Name, Password: WideString);
begin
 if Password <> Name then
 raise Exception.Create (
 'Wrong name/password combination received');
 ProviderDepartments.Exported := True;
 ServerForm.Add ('Login:' + Name + '/' + Password);
end;

Notice that in case the server returns an exception this will be clearly dis-
played (indicating where it comes from, Remote error) on the client side:

Advanced Features of ThinPlus2009
I upgraded the ThinPlus client and server applications to DataSnap 2009
following the steps mentioned earlier, even if these are some rather complex
DataSnap programs, with several customizations. These include fetching
data packets manually, using a master/details structure, executing a para-
metric query, transferring extra data along with the data packets, and the
custom remote login I've just covered.

It is worth having a look at these features, even if briefly, as they should help
those of you that have not used DataSnap (or not a lot) to appreciate its
power. Those who have used it already, instead, will figure out how easily

Marco Cantù, Delphi 2009 Handbook

384 - Chapter 12: DataSnap 2009

the code can be ported to the new architecture. The server application
defined a master/details structure, based on the following settings of the
(respectively) provider, the master data set, the data source used to refer to
it, and the details dataset that refers to the data source:
object ProviderDepartments: TDataSetProvider
 DataSet = SQLDepartments
end
object SQLDepartments: TSQLDataSet
 CommandText = 'select * from DEPARTMENT'
 SQLConnection = SQLConnection1
end
object DataSourceDept: TDataSource
 DataSet = SQLDepartments
end
object SQLEmployees: TSQLDataSet
 CommandText =
 'select * from EMPLOYEE where dept_no = :dept_no'
 DataSource = DataSourceDept
 Params = <
 item
 Name = 'dept_no'
 ParamType = ptInput
 end>
 SQLConnection = SQLConnection1
end

On the client side, the program uses a first ClientDataSet connected with the
provider and a second ClientDataSet that refers to a special data set field of
the first one:
object cds: TClientDataSet
 FetchOnDemand = False
 PacketRecords = 5
 ProviderName = 'ProviderDepartments'
 RemoteServer = DSProviderConnection1
 object cdsDEPT_NO: TStringField...
 object cdsDEPARTMENT: TStringField...
 ...
 object cdsSQLEmployees: TDataSetField
 FieldName = 'SQLEmployees'
 end
end
object cdsDet: TClientDataSet
 DataSetField = cdsSQLEmployees
end

The data of the two ClientDataSet components is displayed in two DBGrid
controls. Notice how the program fetches only 5 records (as indicated in the

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 385

PacketRecords property) in each data packet, and will stop fetching data
after the first packet (as the FetchOnDemand property is False), even if the
grid in not full. You can see this in the following snapshot of the client user
interface just after opening the connection:

Following data packets are fetched manually, as the user clicks on the cor-
responding button:
procedure TClientForm.btnFetchClick(Sender: TObject);
begin
 btnFetch.Caption := IntToStr (cds.GetNextPacket);
end;

The program shows in the button caption how many records it fetched in
each packet. This will be 5 while there are enough records, then the number
or remaining records, and finally zero when all the records have already
been retrieved. At each fetch request the client DBGrid will show more data,
and its scrollbar will be updated accordingly. You can also use the
bntRecCount button to ask how many records have been retrieved so far.

Marco Cantù, Delphi 2009 Handbook

386 - Chapter 12: DataSnap 2009

The client program has a second form, displayed by pressing the Query but-
ton, with another client dataset. This ClientDataSet component is connected
with a parametric query defined by the server as:
object SQLWithParams: TSQLDataSet
 CommandText =
 'select * from employee where job_code = :job_code'
 Params = <
 item
 DataType = ftString
 Name = 'job_code'
 ParamType = ptInput
 Value = 'Eng'
 end>
 SQLConnection = SQLConnection1
end

The client program has a list box, filled at design time with the department
names, which is used to pass the proper parameter to the server. Notice that
to write this code you have first to update the definition of the parameters,
an operation you can do at design time by using the corresponding compon-
ent editor command for the ClientDataSet component. This is the call used
on the client to execute the remote parametric query:
procedure TFormQuery.btnParamClick(Sender: TObject);
begin
 cdsQuery.Close;
 cdsQuery.Params[0].AsString := ComboBox1.Text;
 cdsQuery.Open;
 ...

On the server, when this query is executed the OnGetDataSetProperties
event of the provider adds extra information to the returned data packet:
procedure TAppServerPlus.
 ProviderQueryGetDataSetProperties(Sender: TObject;
 DataSet: TDataSet; out Properties: OleVariant);
begin
 Properties := VarArrayCreate([0,1], varVariant);
 Properties[0] := VarArrayOf(['Time', Now, True]);
 Properties[1] := VarArrayOf([
 'Param', SQLWithParams.Params[0].AsString, False]);
end;

Notice that the use of variant array parameters still works, even if the trans-
port mechanism used by DataSnap 2009 is now different. On the client side,
the btnParamClick event handler has two more lines of code to retrieve
these extra properties from the data packet:

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 387

 Caption := 'Data sent at ' + TimeToStr (
 TDateTime (cdsQuery.GetOptionalParam('Time')));
 Label1.Caption := 'Param ' +
 cdsQuery.GetOptionalParam('Param');

There are a few more features in DataSnap that have been moved over to the
new version, but this overview of the ThinPlus2009 program (mostly
unchanged from its original version written in Delphi 6) should be enough
for my goals: Show you the power of DataSnap and how easy it is to migrate
even a complex application to the Delphi 2009 socket-based (and COM-
free) version of DataSnap.

The DataSnap Administrative
Interface

When you write a DataSnap 2009 server, you can run it, and connect the
Delphi IDE to it at design time to get help in writing the client code. This
help comes in the form of lists of available methods and providers and also
in terms of the generation of the client side proxy classes. To accomplish this
every server has an extra interface, internally called DSAdmin. In a
deployed server you can disable this interface, to avoid others from writing
client applications using Delphi (or at least make their life more difficult).
This is accomplished by turning on the HideDSAdmin property of the
DSServer component and is generally recommended when you deploy an
application.

If the DSAdmin interface156 is active ,though, you can use it to explore a
server dynamically. I've written a bare-bones demo that does exactly that. It
could be extended providing a full generic calling interface, and even by let-
ting it generate extended client side proxy classes.

The program has a SQLConnection that connects with an available server.
You might want to customize the code to connect to the server available at a
given IP and port (the demo uses the default values, hard coded). To test the

156 For information about the DSAdmin interface refer to the DSAmin class (no T in front
of the class name) in the DSCommonServer unit.

Marco Cantù, Delphi 2009 Handbook

388 - Chapter 12: DataSnap 2009

approach, I've first called the simple GetPlatformName method using an
SqlServerMethod component configures as:
object smGetPlatformName: TSqlServerMethod
 GetMetadata = False
 Params = <
 item
 DataType = ftWideString
 Precision = 2000
 Name = 'ReturnParameter'
 ParamType = ptResult
 Size = 2000
 end>
 SQLConnection = SQLConnection1
 ServerMethodName = 'DSAdmin.GetPlatformName'
end

As the method has no parameter and a string return value, the code used to
call it is quite simple:
procedure TFormAdmin.btnGetPlatformNameClick(
 Sender: TObject);
begin
 smGetPlatformName.ExecuteMethod;
 ShowMessage (smGetPlatformName.ServerMethodName + ': ' +
 smGetPlatformName.ParamByName('ReturnParameter').
 AsString)
end;

Most of the DSAdmin methods simply return a dataset. You can open and
browse these datasets with simple loops that perform custom processing:
 smGetMethods.Open;
 while not smGetMethods.EOF do
 begin
 strLog := '';
 for I := 0 to smGetMethods.FieldCount - 1 do
 strLog := strLog +
 smGetMethods.Fields[I].AsString + ' | ';
 ShowMessage (strLog);
 smGetMethods.Next;
 end;

However, if your goal is simply to display the information on the screen,
what it better than connecting a DBGrid to the resulting dataset? The
SqlServerMethod component, in fact, can be opened directly as a database.
Still, you cannot connect it to the user interface as it is a unidirectional data-
set. The classic approach to display the data is to add a ClientDataSet and a
Dataset Provider to the application, connecting them as usual.

Marco Cantù, Delphi 2009 Handbook

Chapter 12: DataSnap 2009 - 389

The first server method I'm calling this way is the GetServerClasses
method:
object smGetServerClasses: TSqlServerMethod
 Params = <
 item
 DataType = ftDataSet
 ParamType = ptResult
 Value = 'TDataSet'
 end>
 SQLConnection = SQLConnection1
 ServerMethodName = 'DSAdmin.GetServerClasses'
end

The result of the call can be displayed by attaching the DataSetProvider
component to it, reopening the ClientDataSet and reducing the default size
of the DBGrid columns:
procedure TFormAdmin.btnGetClassesClick(Sender: TObject);
var
 I: Integer;
begin
 ClientDataSet1.Close;
 smGetServerClasses.Open;
 DataSetProvider1.DataSet := smGetServerClasses;
 ClientDataSet1.Open;
 for I := 0 to DbGrid1.Columns.Count - 1 do
 DbGrid1.Columns[I].Width := 150;
end;

Finally, the last method is the GetServerMethods method of the DSAdmin
interface, which is the most useful one as it returns the methods of each of
the available server classes:
object smGetMethods: TSqlServerMethod
 Params = <
 item
 DataType = ftDataSet
 ParamType = ptResult
 Value = 'TDataSet'
 end>
 SQLConnection = SQLConnection1
 ServerMethodName = 'DSAdmin.GetServerMethods'
end

The code connects the result to the the dataset provider is a way similar to
the previous call. The visual effect, in the client application, will be similar to
this:

Marco Cantù, Delphi 2009 Handbook

390 - Chapter 12: DataSnap 2009

Again, this demo gives only an idea of what can be done using the DataSnap
administrative interface. Other methods of the DSAdmin interface will let
you retrieve the method parameters and other settings. Finally, you can use
a generic SqlServerMethod component and set its name and parameters
dynamically to call any server method.

Conclusion
In this chapter I've covered one the most significant updates in terms of the
component library in Delphi 2009, the new DataSnap architecture for build-
ing multi-tier applications without having to resort to COM. You can use
DataSnap 2009 for database programming, but also to easily call any server
side method.

As this is the last chapter of the book, there is no “What's Next” section, but
only a short conclusion about the product. I don't have much to add to the
material presented so far, which hopefully helped you learn about all of the
new features in Delphi 2009 and appreciate this version of the product.

Delphi 2009 is certainly an outstanding version, with an incredible number
of new features that took me 400 pages to cover. With Delphi having a new
owner (Embarcadero Technologies) and such a nice release including sup-
port for any language (thanks to Unicode), we can truly hope Delphi will still
have a long life. Happy (Delphi) coding, wherever you are in the world!

Marco Cantù, Delphi 2009 Handbook

Index - 391

Index

1995...13
211...363
Action...306
Action Manager.269, 304, 306p., 309, 320
ActionItem..315
ActionLink...306
ActionList..306
Actions...303, 305
ActionToolBar..307
Active Form...294
ActiveX Control Wizard........................294
ActMan unit...318
AddRecentItem.......................................311
AJAX...200, 204
Alan Wood...39
Alignment...256
Allen Bauer...196
Anders Melander...................................277
Anonymous methods.............161, 178, 380
AnsiChar.23pp., 44pp., 48, 69pp., 84p., 87
AnsiString....................................49p., 55p.
AnsiStrings unit.......................95pp., 243p.
Application.....................................274, 281
Application Menu..................................310

ApplicationMenu...................................319
Apply Option Set dialog box..................120
ASCII..22
Associate..323
AsString..336, 341
BabelFish..71
BackgroundColor...................................265
BalloonHint...249
Bangla...36
BarColor...265
Barry Kelly......................................172, 178
BaseException...............................238, 240
Basic Multilingual Plane....................27, 54
BCM_SETSHIELD................................252
BDE..237, 356
BitBtn..251
BLOB...280, 343
Blog...................................17, 203, 228, 231
BOM....................29, 34, 72p., 91, 233, 268
Bookmark...93, 334
Borland...13
Borland Resource Compiler..................126
BS_COMMANDLINK...........................252
BS_SPLITBUTTON...............................252

Marco Cantù, Delphi 2009 Handbook

392 - Index

BSTR...41, 293
Build Configurations..............................119
ButtonedEdit..........................259, 261, 318
Byte Order Mark......................................34
ByteLength..51p.
C++...135
C++ language..137
C++Builder..64
Capacity...230
Capture the execution context...............182
CategoryPanel................................270, 272
CategoryPanelGroup.............................270
CF_UNICODETEXT.............................280
Character literal.......................................70
Character unit............................47, 86, 243
Characters unit..48
CharCase..258
CharInSet...45, 85
Chau Chee Yang......................................351
CheckBoxes..267
CheckWin32Version......................274, 281
Chevron...271p.
Chinese...87, 133
Chr..46
Chris Bensen...................................211, 294
Chris Hesik...133
Class Explorer...127
Class factory...363
Class helper..76
Classes unit............................216, 232, 243
ClientDataSet....166, 320, 330p., 339, 364,

370, 379, 382, 384, 386, 388p.
Clipboard...280
ClipBrd unit...280
Closures..178
Coclass...288
Code page..22p., 26
Code point.....24, 27pp., 32, 34, 39, 44, 48,

53p., 71, 80
CodeGear..13
ColorDepth...278
Columns..315
COM..283, 365p.
ComboBox......................................259, 281
CommandLinkHint...............................252

CommandProperties...........................316p.
CommandStyle......................................309
CommandType.......................................312
Common User Access............................299
Compiler directive..

G...115
INLINE..115
M..115
MethodInfo.......................................366
POINTERMATH...............................102
STRINGCHECKS..............................115
Unit alias...95
VARPROPSETTER............................211
Z...115
$HIGHCHARUNICODE....................71
$STRINGCHECKS.............................65

Compiler option...
--codepage..26
--string-checks....................................65
-$M..115
-$Z..115

Compiler Version.............................13, 208
Component Object Model.....................283
Components Wizards.............................131
Configuration Manager dialog box........122
Configuration Settings...........................119
ConnectionData.....................................349
ConnectionName...................................347
ConnectionString...................................348
Console Applications...............................98
Constraints for Generics........................148
Construct..162
Contnrs unit....................................157, 163
Control characters...................................22
ConvertFromUtf32............................47, 53
Converting Strings...................................61
CreatePanel..270
Custom Encoding.....................................76
CustomHint......................................248pp.
CustomizeDlg...307
Cyrillic..58
Data Pumping..356
Data-aware...357
DataSetProvider............................364, 389
DataSnap.....................................361p., 387

Marco Cantù, Delphi 2009 Handbook

Index - 393

DBError..237
DbExpress.....................238, 346, 353, 366
DBGrid...320, 331, 339p., 359, 364, 384p.,

388
DBImage..359
DBNavigator...319
Dbxdrivers.ini..350
DbxInterBase unit351
Debugger..133
Default..146, 148
Default Constructor...............................155
DefaultFieldClasses...............................339
DefaultFieldDefClass.............................338
DefaultFont..274
DefaultParamClass................................338
Delphi 2007 Handbook......4, 94, 273, 347,

352
Deprecated....................................209, 334
Description...323
DExplorer...108
DFM Files..80
DialogAction..309
Dictionary...164
Domain Specific Languages..................228
DoubleBuffered.....................................248
Draw...279
DrawText...39p.
Driver...349
DropDownMenu....................................252
DSAdmin..387pp.
DSCommonServer unit.........................387
DSNames unit..373
DSProviderConnection.................364, 382
DSServer.................................362, 364, 371
DSServerClass........363, 367, 371, 373, 377
DSTCPServerTransport.................363, 371
Edit...256
Editor..132
ElevationRequired.................................252
Email...17
Embarcadero Technologies.............13, 390
EndOfStream...234
EnsureUnicodeString.......................64, 115
EProgrammerNotFound.......................242
Equals..217p.

ER/Studio...13
ES_NUMBER..256
Essential Pascal..4
Event Handlers......................................188
Example..

AnonAjax....................................200pp.
AnonymFirst......................179, 181, 184
AppFont...274p.
BareBoneRibbon..............................302
ButtonEdits......................................260
ButtonsDemo....................................252
CategoryPanels.................................270
CharTest.................................45, 48, 84
CharTroubles......................................86
CheckBoxHeader..............................266
ClassContraint..................................149
CustomEncoding................................79
CustomerDictionary.........................164
CustomFields....................................339
DataRibbon......................................320
DbEditPlus..357
DbxMulti2009..........................347, 351
DfmTest...81
DsnapMethods.........................374, 378
DsnapMethodsClient........................379
DsnapMethodServer........................370
EditFamilyDemo......................257, 259
ExceptionsTest..................237, 239, 241
First3Tier2009.................................367
FromAsciiToUnicode.............23, 25, 28
GenericCodeGen...............................144
GenericInterface............................168p.
GenericTypeFunc..........................146p.
GraphicsTest..................................277p.
GraphicTest......................................276
GroupingList....................................263
HighCharTest.....................................70
HintsDemo....................................249p.
IntfConstraint.................151, 154p., 169
IntfContraints...................................168
KeyValueClassic................................136
KeyValueGeneric...........................138p.
LabelsDemo......................................254
LatinTest..56pp.
ListDemoMd2005.........................158p.

Marco Cantù, Delphi 2009 Handbook

394 - Index

ListMonitor.......................................223
MiniPack...80
MiniSize..80
MinorLang..................................208pp.
MoveStrings....................................89p.
MyTrayIcon......................................273
MyTrayIconClick..............................273
PlainTips...324
PointerMath.....................................100
PointerMathD2007..........................102
ProjManagerTest.......................118, 121
RadioGroupDemo............................255
RawTest..67
ReaderWriter...............................233pp.
ResourceTest.................................124p.
RibbonDemo.....................................315
RibbonEditor.................309, 313p., 318
RibbonEditorTips.....................325, 327
SimpleClient.....................................293
SimpleServer............................286, 288
SmartPointers...................................176
StreamDsDemo................................346
StreamEncoding...........................73, 76
StringBuilder......................226p., 229p.
StringConvert......................62, 133, 191
StringTest...................................51, 53p.
SuperProgress..................................265
SystemObject....................................218
TestChar..45
ThinPlus2009...................381, 383, 387
TypeCompRules.................139, 141, 143
UniApiSpeed.......................................37
UniCds......................................330, 333
UniClipboard.................................280p.
UnicodeConsoleTest..........................99
UnicodeData.......................................32
UnicodeMap.......................................32
UnicodeWinApi..................................35
UniFontSubst.....................................39
UniRichEdit......................................268
Utf8Test..60
VariantOver...............................212, 214
VarProp..211p.
WebFind.................................193p., 201

Exception............................236, 238, 241p.

Execute..380
Exit...210
ExpandCapacity.....................................230
ExtCtrls unit...................................259, 279
Extended Metadata................................352
ExtTextOut..38p.
Fabrizio Schiavi..2
FastCode..244
FetchOnDemand...................................385
File Open...311
FillChar..86
Fluent User Interface.........................299p.
Font..282
Font Dialog..309
Font substitution.....................................39
Fonts...39
FreeOnTerminate...................................199
FtWideString..................................331, 342
Fun Side of Delphi.................................242
G clef..48
Generate Datasnap client classes.........368
Generic Type Functions.........................145
Generics..135
Generics.Collection unit........................243
Generics.Collections unit...............157, 163
Generics.Default unit..................170p., 243
Generics.Defaults unit...........................160
GenTLB.exe..284
GetCategoryPanelClass..........................272
GetCollection..355
GetFieldsList..333
GetHashCode..217
GetNextPacket.......................................385
GetPlatformName.................................388
GetPreamble...72
GetProcAddress...............................98, 375
GetServerClasses...................................389
GetServerMethods.................................389
GetTableNames.....................................354
GetTickCount..........................192, 197, 224
GetTypeName...147
GetUserName...37
GetWindowText.......................................35
GIF...277p.
GlassFrame...281

Marco Cantù, Delphi 2009 Handbook

Index - 395

GlowSize...254, 281
GlyFX...278
Google...193
Google group..17
Grapheme...27
GridPanel...272
GroupAlign...315
GroupHeaderImages.............................262
GroupPosition..316
Groups..263
GroupView...262
Gustavo Daud...277
HeaderControl.......................................266
HideDSAdmin..387
Hint..250
Holger Flick..2
HRESULT..290
HTML...255, 295
HTTP..201
IAppServer..........................366p., 370, 372
IComparer<T>............................160p., 170
IdHttp...193
IDL...284
IEqualityComparer<T>.........................170
ImageList...............................262, 276, 307
Images..307
Implicit..174, 214
Indy..193, 200
InfoPower Grid Essentials.....................359
Inlining...94
InnerException...........................237p., 240
Installation...108
InstallAware...108
InstanceSize...149
Int8...215
Integral Types..214
Interceptor class....................................188
Interface Definition Language..............284
Interface ID..168
InterlockedIncrement............................197
Interposer class......................................357
Invocation..373
Invoke...185
IsLeadChar..49, 86
ISO 8859...23p.

IsSurrogate...49
IUnknown..289
Jan Goyvaerts.............................2, 38, 65p.
Japanese.....................................71, 81, 280
JavaScript...178
Jeremy North....................................2, 300
Jeroen Pluimers...2
John Kaster..356
Jon Benedicto..356
JPEG..276p.
JQuery..178, 200
Key Tips..313
Keyboard..313
LargeImages..308
Latin-1..25, 56, 62
Lazy initialization...................................165
LeadBytes...86
LeftButton..260
Length..94
LifeCycle..373p.
LinkedActionList...................................325
LinkLabel...254
ListView.........................166p., 262pp., 281
Lulu.com...16
MainFormOnTaskbar............................281
Marco Breveglieri.......................................2
Marquee...265
Master/details.......................................384
Mastering Delphi.. .4, 15, 80, 157, 177, 286,

293, 305, 381
Math unit...244
MaxThreads...378
Memo...258
MessageBox...36
MessageDlg..275
MessageFont..275
Metadata..352
Method pointers.....................................177
Methods Chaining.................................228
Micro ISV..15
Microsoft...............14, 108, 126, 283, 300p.
MIDAS..381
Most recently used.................................311
Move...89
MoveBy...337

Marco Cantù, Delphi 2009 Handbook

396 - Index

MSBuild..110
MultiByteToWideChar.............................57
Nested types...252
NewRow...316
NumbersOnly.................................256, 357
Office 2007..300
Office Fluent UI Design Guidelines......300
OnAccept...311
OnAfterConnection...............................382
OnBalloonClick......................................273
OnClose..375
OnConnect...364
OnCreateInstance..................................374
OnDestroyInstance........................374, 377
OnDisconnect..364
OnExecute..305
OnGetClass..382
OnGetDataSetProperties.......................386
OnItemChecked.....................................264
OnLinkClick...255
OnMouseEnter......................................249
OnSectionCheck.....................................267
Open Arrays Parameters.......................103
Ord...46
Overloading..212
PacketRecords.......................................385
Panel...269
PAnsiChar....................................35, 44, 97
Parallel For...196
ParentCustomHint................................248
ParentDoubleBuffered..........................248
ParentFont..274p.
PasswordChar..257
PByte...101, 345
PChar......................................38, 44, 98pp.
Peek..234
Peter W A Wood...2
Philippe Kahn...135
PInteger..100, 102
PNG...277p., 359
Pointer Math..99
Polymorphisms.......................................171
PoolSize..378
PopupActionBar....................................269
PopupActionBarEx................................307

Potential data loss...................................63
Prime number..............................196p., 371
Procedural types.....................................177
ProcessMessages....................................197
ProgressBar....................................265, 281
Project Configuration Files....................110
Project Manager..................117p., 123, 286
Project Options dialog....................113, 126
Project Options dialog box......................89
Proportional..280
Protected hack..357
ProviderName..364
Proxy...165
Proxy class..367
Push buttons...251
Put by ref...211
PWideChar...................................35, 44, 97
QueryPerformanceCounter...................192
Quick Access Toolbar.............................313
QuickAccessToolbar...............................319
Radio buttons...255
RadioGroup....................................255, 375
RaiseOuterException.........................238p.
RaisingException................................241p.
RawByteString.............................55, 66, 90
ReadFromFile..73
RecentItems...312
Reference count.......................................50
Register ActiveX Server........................290
Registered Type Libraries......................291
RemoteServer..364
ReportMemoryLeaksOnShutdown.......174
ResemblesText...96
Resource Compiler.................................126
Resources...123
Resources dialog box.............................124
Resourcestring..127
Restricted IDL.......................................284
ReverseString...96
Ribbon....301pp., 307pp., 313, 315, 317pp.,

323, 325
RibbonComboBox..................................318
RibbonSpinEdit.....................................303
RichEdit...267, 308
RIDL..284, 286

Marco Cantù, Delphi 2009 Handbook

Index - 397

RightButton...260
RoundTo..244
Rows...315
Safecall...................................287, 289, 382
Screen...275
Screen Tips...323
ScreenTipsManager....................323, 325p.
ScreenTipsPopup..............................323pp.
Sections..266
Server...373
Server Methods......................................366
ServerClassName...................................364
ServerMethodName..............................367
Session..373
Set of Char...45, 84
SetCodePage..........................52, 56, 62, 66
SetWindowText.......................................38
ShellExecute...255
ShortString................................50, 55, 222
ShowCaption..270
ShowHelpButton...................................302
ShowMessage...275
Singleton...170
SizeOf..146, 149
Smart Pointers..171
SmoothReverse......................................265
Sorting..159
SQLConnection....347, 352, 354, 364, 366,

371, 387
SqlServerMethod.....................367pp., 388
Standard actions...................................308
State..265
Stdcall..290
Steve Tendon..135
String Conversion Warnings...................88
String literal...70
StringCodePage..................................51, 57
StringElementSize...........................51p., 57
StringOfChar..87
StringRefCount...51
Style..252
SupportsPartialTransparency...............276
Surrogates..29
Synchronize...................................193, 380
SyncObjs unit...244

System unit.....46, 51, 57, 214p., 223, 243p.
System.Object...216
System.Text.Encoding.............................72
SysUtils unit.......51, 72, 85, 90, 186p., 237,

242pp.
TAction..306
TActionClientItem.........................309, 316
TBalloonHint......................................248p.
TBasicAction..306
TBDXProperties....................................349
TBitmap..276
TBlobField..343
TBookmark...................................93, 334p.
TButton...251
TButtonProperties..................................317
TButtonStyle..252
TBytes..90
TCategoryPanel......................................272
TCharacter..47, 53
TComboBox...259
TComparer<T>...........................160p., 170
TConnectionData...................................349
TControl...248, 318
TCP/IP..363pp.
TCustomAction......................................306
TCustomButton......................................251
TCustomEdit..357
TCustomHint...248
TDataSet..............................332pp., 344pp.
TDBEdit..333, 357
TDBImage..280
TDBXCommand....................................369
TDBXMetaDataCommands...................355
TDBXTable...355
TDictionary<TKey,TValue>..................158
TDrawingStyle.......................................279
TDSServerModule..............................366p.
TEdit...256, 258p.
TEditButton...260
TEncoding.................................61, 72p., 76
TEqualityComparer<T>........................170
TextHint......................257, 259, 318, 357p.
TextOut..39, 98
TextOutW...35
TField...332, 342

Marco Cantù, Delphi 2009 Handbook

398 - Index

TFieldDef..341
TFileStream.....................................99, 234
TFunc<TResult>....................................187
TGraphic...276pp.
Thread Synchronization........................193
Threading...223
Threads Status..133
Tiburòn...110
TInterfacedObject..................................168
TJPEGImage..277
TLabel...254
TLB...287
Tlibimp.exe..285
TList<T>..157p.
TLookupList...339
TMonitor................................223, 374, 378
TObject..216, 221
TObjectDictionary<TKey, TValue>.......164
TObjectList<T>......................................163
Tool Palette..130
ToString.......216, 218, 227, 238p., 372, 376
ToUpper...48
TParam...344
TProc..186
TQueue<T>..157
TrayIcon...273
TRecordBuffer....................................345p.
TreeView.............................29pp., 262, 318
TRemoteDataModule....................366, 382
TRibbonPage...302
TRibbonTabItem...................................302
TScreenTipItem.....................................323
TSingletonImplementation...................170
TSQLConnection........................350p., 362
TStack<T>..158
TStreamReader...................................232p.
TStreamWriter....................................232p.
TStringBuilder....................92, 226pp., 234
TStringField...................................336, 342
TStringReader...............................232, 234
TStringWriter........................232, 234, 236
TSysCharSet...85
TTextReader..................................232, 235
TTextWriter.............................99, 232, 235
TThread..................................193, 223, 379

TUnicodeEncoding..................................72
Turbo Pascal...13
TVarRec..103
TWideMemoField..................................343
TWideStringField.......................335p., 342
TWinControl..248
Type libraries...284
Type library editor........284, 286, 288, 293
TypeInfo...146, 148
Types Compatibility Rules.....................141
TypInfo unit..............................79, 147, 222
UCS-2...27
UCS4Char...............................27, 46, 54, 77
UCS4String...............................46, 54p., 78
Unicode Consortium....................21, 32, 73
Unicode Transformation Formats..........28
UnicodeString.................................49p., 53
UnitName...218
UpCase...48
UpdateRegistry......................................381
UpDown...378
UpperCase..48, 96
UseCustomFrame.........................302, 304
UseLatestCommonDialogs....................275
User Account Control............................290
UseVisualStyle.......................................255
UTF-16...27, 29, 34
UTF-32...29, 34, 76
UTF-8.......................27pp., 34, 60, 74, 222
UTF8String...................55, 60pp., 68p., 92
Variants..103
VER200..13, 208
Video...25
Videos...3
Visual C++..15
VmtParent..221
Wait Chain Traversal.............................133
Web 2.0 technologies...............................16
WideChar.....................................44, 49, 85
WideCharToMultiByte............................59
WideString.................................37, 41, 293
WideStrUtils unit.........................41, 61, 96
Wikipedia...300
Win32...14
Win32 API..34

Marco Cantù, Delphi 2009 Handbook

Index - 399

Windows 9x..35, 39
Windows API...97
Windows unit...38
Windows Vista......252, 254, 257, 259, 265,

281
Windows XP.....39, 251p., 254, 256p., 259,

262, 265, 269, 282
WinExec...375
Woll2Woll Software...............................359
Word wrapping......................................255

WriteToFile..73
Yorai Aminov...356
YouTube...25
ZLib unit..244
-idecaption...109
.DPROJ..110p.
.OPTSET..121
.RES..123
€..23, 25, 71

Marco Cantù, Delphi 2009 Handbook

400 - Index

Web Sites by Marco Cantù
here is a partial list of the diverse and somewhat unrelated web sites I man-
age (or don't manage enough, as some of them are quite old and static) in
English language:
http://www.marcocantu.com
http://blog.marcocantu.com
http://www.socialwebbook.com
http://www.thedelphisearch.com
http://www.wintech-italia.com
http://dev.newswhat.com
http://delphi.newswhat.com
http://ajax.marcocantu.com
http://www.delphimentor.com

Here are other sites in Italian language:
http://www.marcocantu.it
http://www.wintech-italia.it
http://shop.wintech-italia.com
http://www.delphiedintorni.it
http://www.piazzacavalli.net

Finally, these are personal pages on community sites (not all frequently
updated) and micro-blogging sites:
http://www.linkedin.com/in/marcocantu
http://www.facebook.com/people/Marco_Cant/600881813
http://www.librarything.com/profile/MarcoCantu
http://stores.lulu.com/marcocantu
http://twitter.com/marcocantu
http://marcocantu.myplaxo.com/

Marco Cantù, Delphi 2009 Handbook

	Delphi 2009 Handbook - Partial edition
	Delphi2009Handbook_ebook.pdf

